화학공학소재연구정보센터
Biotechnology Progress, Vol.28, No.1, 121-128, 2012
Chemometrics applications in biotech processes: Assessing process comparability
A typical biotech process starts with the vial of the cell bank, ends with the final product and has anywhere from 15 to 30 unit operations in series. The total number of process variables (input and output parameters) and other variables (raw materials) can add up to several hundred variables. As the manufacturing process is widely accepted to have significant impact on the quality of the product, the regulatory agencies require an assessment of process comparability across different phases of manufacturing (Phase I vs. Phase II vs. Phase III vs. Commercial) as well as other key activities during product commercialization (process scale-up, technology transfer, and process improvement). However, assessing comparability for a process with such a large number of variables is nontrivial and often companies resort to qualitative comparisons. In this article, we present a quantitative approach for assessing process comparability via use of chemometrics. To our knowledge this is the first time that such an approach has been published for biotech processing. The approach has been applied to an industrial case study involving evaluation of two processes that are being used for commercial manufacturing of a major biosimilar product. It has been demonstrated that the proposed approach is able to successfully identify the unit operations in the two processes that are operating differently. We expect this approach, which can also be applied toward assessing product comparability, to be of great use to both the regulators and the industry which otherwise struggle to assess comparability. (c) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2012