화학공학소재연구정보센터
Biotechnology Progress, Vol.28, No.3, 595-607, 2012
Mini-scale bioprocessing systems for highly parallel animal cell cultures
Animal cells have been used extensively in therapeutic protein production. The growth of animal cells and the expression of therapeutic proteins are highly dependent on the culturing environments. A large number of experimental permutations need to be explored to identify the optimal culturing conditions. Miniaturized bioreactors are well suited for such tasks as they offer high-throughput parallel operation and reduce cost of reagents. They can also be automated and be coupled to downstream analytical units for online measurements of culture products. This review summarizes the current status of miniaturized bioreactors for animal cell cultivation based on the design categories: microtiter plates, flasks, stirred tank reactors, novel designs with active mixing, and microfluidic cell culture devices. We compare cell density and product titer, for batch or fed-batch modes for each system. Monitoring/controlling devices for engineering parameters such as pH, dissolved oxygen, and dissolved carbon dioxide, which could be applied to such systems, are summarized. Finally, mini-scale tools for process performance evaluation for animal cell cultures are discussed: total cell density, cell viability, product titer and quality, substrates, and metabolites profiles. (C) 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012