화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.20, No.3, 411-416, 2012
Incorporating Simulated Zinc Ash by Kaolinite- and Sludge-based Ceramics: Phase Transformation and Product Leachability
Zinc is one of the hazardous metals commonly found in municipal solid waste incineration (MSWI) ash, and this study reveals the stabilization mechanisms when sintering zinc-laden ash and ceramic precursors as a waste-to-resource strategy. Using ZnO to simulate the zinc-laden ash and sintering with kaolinite and mullite ceramic precursors, both zinc aluminate spinel (ZnAl2O4) and willemite (Zn2SiO4) phases were found in the products under the tested thermal conditions. The results also indicate that kaolinite and mullite precursors exhibit different incorporation behavior, and ZnAl2O4 and Zn2SiO4 were found to be competitive as the Zn-hosting phases in the system. A prolonged leaching test was used to evaluate the leachability of potential product phases in the system. The concentrations of zinc in ZnO and Zn2SiO4 leachates were about two orders of magnitude higher than that in ZnAl2O4 leachate, indicating the preference of forming ZnAl2O4 for zinc stabilization. Furthermore, the aluminum-rich sludge generated from waterworks could be beneficially used as a material resource to stabilize zinc in this study. The X-ray diffraction (XRD) pattern collected from the 1150 degrees C and 3-h sintered sample shows the success of incorporating zinc into the ZnAl2O4 spinel structure with waterworks sludge precursor. The formation of ZnAl2O4 indicates a strong potential for employing aluminum- and silicon-based materials to thermally immobilize zinc and achieve the beneficial use of metal-laden MSWI ash.