화학공학소재연구정보센터
Electrophoresis, Vol.32, No.24, 3612-3620, 2011
The effect of miR-7 on behavior and global protein expression in glioma cell lines
Malignant glioma is a common cancer of the nervous system. Despite recent research efforts in cancer therapy, the prognosis of patients with malignant glioma has remained dismal. MicroRNAs are noncoding RNAs that inhibit the expression of their targets in a sequence-specific manner, and a few have been shown to act as oncogenes or tumor suppressors. Here, we aimed at exploring the precise biological role of microRNA-7 (miR-7) and the global protein changes in glioma cell lines transiently transfected with miR-7. Transfection of miR-7 into glioma cell lines causes inhibition of cell migration and invasion and suppression of tumorigenesis. Moreover, ectopic expression of miR-7 inhibits lung metastases of glioma in vivo. Among 65 protein spots with differential expression separated by 2-DE, 37 proteins were successfully identified by MS/MS analysis. Of those, the 25 downregulated proteins, which include 14-3-3?, eukaryotic translation initiation factor 5A (EIF5A), and annexin A4, may be downstream targets of miR-7, a finding that could elucidate some aspects of the behavior of glioma cells at the protein level. In conclusion, the absence of miR-7 function could cause downstream molecules to switch on or off, resulting in glioma development, invasion, and metastases. MiR-7-based gene treatment may be a novel anti-invasion therapeutic strategy for malignant glioma.