화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.51, No.19, 6745-6752, 2012
Pilot Plant Scale Synthesis of CNS: Influence of the Operating Conditions
The present work was an in-depth study related to synthesis of carbon nanospheres (CNSs) at different scales (lab and pilot) with the end goal to economize the production of these materials on a large scale. Synthesis of large amounts of CNSs relies on the careful control of the operating conditions such as space velocity (helium flow rate), hydrocarbon (benzene) content in feed stream, and synthesis time. The alteration of these variables caused important changes in both the yield and properties of the obtained materials. In general, characterization results of the synthesized CNSs demonstrated that they showed low BET surface area and pore volume values typical of spherical geometrical bodies, good thermal stability, and good crystallinity. Normally, CNSs are presented as conglomerates as consequence of the accretion via the carbon atoms at the edge of the "curling" graphitic flakes. Finally, results demonstrated a successful scale up, obtaining a CNSs yield at pilot scale considerably superior (factor of 3.9) to that obtained at laboratory scale.