Inorganic Chemistry, Vol.51, No.10, 5911-5918, 2012
Heptanuclear Heterometallic [Cu(6)Ln] Clusters: Trapping Lanthanides into Copper Cages with Artificial Amino Acids
Employment of the artificial amino acid 2-amino-isobutyric acid, aibH, in Cu-II and Cu-II/Ln(III) chemistry led to the isolation and characterization of 12 new heterometallic heptanuclear [Cu(6)Ln(aib)(6)(OH)(3)(OAc)(3)(NO3)(3)] complexes consisting of trivalent lanthanide centers within a hexanuclear copper trigonal prism (aibH = 2-amino-butyric acid; Ln = Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10), Tm (11), and Yb (12)). Direct curent magnetic susceptibility studies have been carried out in the 5-300 K range for all complexes, revealing the different nature of the magnetic interactions between the 3d-4f metallic pairs: dominant antiferromagnetic interactions for the majority of the pairs and dominant ferromagnetic interactions for when the lanthanide center is Gd-III and Dy-III. Furthermore, alternating current magnetic susceptibility studies reveal the possibility of single-molecule magnetism behavior for complexes 7 and 8. Finally, complexes 2, 5-8, 10, and 12 were analyzed using positive ion electrospray mass spectrometry (ES-MS), establishing the structural integrity of the heterometallic heptanuclear cage structure in acetonitrile.