Journal of Chemical Thermodynamics, Vol.44, No.1, 57-65, 2012
Phase equilibrium data and thermodynamic modeling of the system (CO2 + biodiesel plus methanol) at high pressures
The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO2(1) + methanol(2)} and {CO2(1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO2(1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO2(1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO2(1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO2(1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng-Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR-WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR-WS presented the best performance. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords:Phase equilibrium;Fatty acid methyl esters;Biodiesel;Supercritical CO2;Methanol;Equation of state