- Previous Article
- Next Article
- Table of Contents
Journal of Colloid and Interface Science, Vol.365, No.1, 1-15, 2012
Microfluidic circuit analysis I: Ion current relationships for thin slits and pipes
Existing microfluidic circuit theories consider conservation of volume and conservation of total charge at each channel intersection (node) that exists within a circuit. However, in a strict sense conservation of number (or charge) for each ion species that is present should also be applied. To be able to perform such a conservation the currents due to the movement of each ion species (electrokinetic ion currents) that occur within each channel need to be known. Hence, we here present analytical and numerical methods for calculating these ion currents (and fluid flowrates) in Newtonian binary electrolyte solutions flowing within two-dimensional thin slits and pipes. Analytical results are derived in the limits of low potential, high potential, and thin double layers. We show that irrespective of double layer overlap, the Boltzmann distribution is valid provided that a local geometric mean is used for the reference ion concentration. While the real significance of the work lies in its application to multi-channel microfluidic circuit theory (see the accompanying paper of Biscombe et al. [1]), the present results show that even in single channels, ion current behaviour can be surprisingly complex. (C) 2011 Elsevier Inc. All rights reserved.