화학공학소재연구정보센터
Journal of Crystal Growth, Vol.353, No.1, 47-54, 2012
Investigation on structural, optical, morphological and electrical properties of thermally deposited lead selenide (PbSe) nanocrystalline thin films
In this paper, we report the substrate temperature induced changes in physical properties of thermal evaporated lead selenide (PbSe) thin films from the chemically synthesized nanocrystalline PbSe powders. As the first step, nanocrystalline lead selenide was synthesized by simple chemical method at 80 degrees C using lead nitrate [Pb(NO3)(2)] and sodium selenosulphate [Na2SeSO3] in the aqueous alkaline media. Ethylene Diamine Tetra acetic acid (0.1 M) was used as a complexing agent to form stable complexes with metal ions. Later on, the lead selenide thin films were deposited on the degreased glass substrates under a vacuum of 10(-5) Torr at various substrate temperatures by thermal evaporation technique using the pre-synthesized nanocrystalline PbSe powders. X-ray diffraction results show the synthesized powders and the deposited PbSe films belong to cubic structure. A gradual reduction in optical bandgap of films was observed with increasing substrate temperatures, which revealed the crystallization of the films. These observations are corroborated by photoluminescence spectroscopy study. Changes in surface morphology of the films with respect to substrate temperature were studied by high resolution scanning electron microscopy and atomic force microscopy. Electrical study infers the deposited films are of p-type semiconducting nature. (C) 2012 Elsevier B.V. All rights reserved.