화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.124, No.3, 1808-1814, 2012
Temperature and time dependence of electrical resistivity in an anisotropically conductive polymer composite with in situ conductive microfibrils
An anisotropically conductive polymer composite (ACPC) based on conductive carbon black (CB) and binary polymer blend of polyethylene (PE) and polyethylene terephthalate (PET) was successfully fabricated under shear and elongational flow fields. The PET phase formed in situ the aligned conductive microfibrils whose surfaces were coated by CB particles. This ACPC material exhibited a strong electrical anisotropy within a broad temperature range. When the ACPC samples were subjected to isothermal treatment (IT), they showed anomalous variations of the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects. The PTC intensity was attenuated gradually with the increase of the IT time, and the NTC intensity was nearly eliminated after IT of 8 or 16 h. Beyond 16 h, the resistivity in the NTC region rose anomalously with the temperature after the elimination of NTC effect, which was the result of much transformation from the potential pathways to the intrinsic pathways due to the disordering of oriented conductive microfibrils. When the amount of potential pathways was very small, the effect of the intrinsic pathway separation surmounts that of the potential pathways, leading to the anomalous resistivity increase in the NTC region. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012