화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.124, No.3, 2250-2268, 2012
Synthesis of full and semi Interpenetrating hydrogel from polyvinyl alcohol and poly (acrylic acid-co-hydroxyethylmethacrylate) copolymer: Study of swelling behavior, network parameters, and dye uptake properties
Semi and full interpenetrating network (IPN) hydrogels were synthesized by allowing free radical copolymerization of acrylic acid (AA) and hydroxyethyl methacrylate (HEMA) in the matrix of polyvinyl alcohol (PVOH). Accordingly, four different semi IPN hydrogels were prepared with PVOH: copolymer mass ratio of 1 : 1, 1 : 0.75, 1 : 0.5, and 1 : 0.25. These hydrogels were designated as SEMIIPN1, SEMIIPN2, SEMIIPN3, and SEMIIPN4, respectively. In all of these SEMIIPN, after polymerization PVOH was crosslinked with 2 mass % glutaraldehyde to form the semi IPN structure. In a similar way, sequential full IPN were prepared from PVOH and copolymer of AA and HEMA (designated as PAAHEMA) with same composition except in this case apart from crosslinking of PVOH by 2 mass % glutaraldehyde the PAAHEMA copolymer was further crosslinked with N,N'-methylenebisacrylamide (NMBA) to produce four full IPN hydrogels designated as FULLIPN1, FULLIPN2, FULLIPN3, and FULLIPN4. All of these semi and full IPN type hydrogels were characterized by carboxylic %, FTIR, UV, DTA-TGA, XRD, SEM, and mechanical properties. The network parameters, swelling and diffusion characteristics of these hydrogels were also studied. The performance of these semi and full IPNs were compared in terms of their relative abilities for removing varied concentration of rhodamine B (RB) and methyl Violet (MV) dyes from water. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012