화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.124, No.6, 5056-5063, 2012
Vulcanization behavior and mechanical properties of organoclay fluoroelastomer nanocomposites
The vulcanization behavior and mechanical properties of clay/fluoroelastomer nanocomposites produced by melt-mixing of Dyneon FPO 3741 (a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene) with 10 phr of unmodified montmorillonite (CloisiteNA) or di(hydrogenated tallow-alkyl) dimethyl ammonium-modified montmorillonites (Cloisite15A and Cloisite20A) were studied. The properties of clay/FKM nanocomposites were compared with composites prepared using 10 and 30 phr of carbon black. The effects of clay surfactant and surfactant concentration on the vulcanization behavior, mechanical, and dynamical properties of peroxide cured composites were studied. XRD results of cured composites showed a decrease in d-spacing and indicated deintercalation of the clays after the vulcanization process. It was also found that organoclays retard the FKM peroxide vulcanization process. Significantly, higher maximum torque on vulcanization was obtained with organoclays versus unmodified clay and carbon black. Although the morphologies of organoclay/FKM nanocomposites studied by XRD and TEM suggest similar intercalated/exfoliated structures, the organoclay with the lowest concentration of surfactant (95 meq/100 g clay) resulted in the highest increase in torque, modulus, hardness, and tear strength in the clay/FKM nanocomposites. It was also found that organoclays can increase both the hydrodynamic reinforcement and hysteresis loss of FKM nanocomposites. (c)proves 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011