화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.125, No.2, 1448-1455, 2012
Preparation and characterization of flexible poly(vinyl chloride) foam films
In this study, the effect of activator ZnO and heating time at 190 degrees C on foaming, gelation, and dehydrochlorination of poly(vinyl chloride) (PVC) plastisol was investigated. For this purpose, a PVC plastisol was prepared by mixing PVC, dioctyl phthalate (DOP), azodicarbonamide (ADC), ZnO, and the heat stabilizers calcium stearate (CaSt2) and zinc stearate(ZnSt2). PVC plastisol films were heated for 3, 6, 12, and 24 min periods at 190 degrees C to see the effect of heating time on the gelation and foaming processes of the PVC foam. The time of 12 min was determined to be optimum for the completion of gelation and foaming processes without thermal degradation of PVC. No foaming was observed under the same conditions for the samples without ZnO. ZnO had a significant catalytic effect on ADC decomposition, accelerating the foaming of the films. Average porosity measurement showed a consistent increase in porosity with heating time up to 76% and the average density decreased from 1.17 to 0.29 g/cm3 on foaming. Tensile tests showed that the tensile strength and tensile strain both increased considerably up to 0.98 MPa and 207%, respectively, with heating time and the elastic modulus was seen to gradually decrease from 4.7 to 0.7 MPa with heating time. Films without ZnO had higher tensile strength since there were no pores. PVC thermomat tests showed that ZnO lowered the stability time of plastigel film with azodicarbonamide. (c) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012