화학공학소재연구정보센터
Applied Energy, Vol.86, No.7-8, 1170-1178, 2009
Analyses of ice slurry formation using direct contact heat transfer
in the present study, ice slurry is produced by direct contact heat transfer between water and a coolant, Fluroinert FC 84. An analytical model has been developed to predict the growth of ice around the injected supercooled coolant droplets, which involves phase change and heat transfer between layers. During the journey of the coolant droplets through the ice generator, detachment of ice layer formed on the droplets occurs. Equations have been development to describe the process of detachment. Experiments were performed to validate the model developed to predict the ice generation. Parametric studies were then carried out on ice growth rate for different variables, such as droplet diameters and initial liquid temperatures. Both droplet diameters and initial liquid temperatures play an important role in the ice formation around the supercooled liquid surface. Ice growth rate increases with the increase of the droplet diameter, while the growth rate decreases with the increase of the initial temperature of the liquid droplet. For an ice slurry system, it is found that the predicted values of ice slurry generation are in good agreement with the experimental findings. (C) 2008 Elsevier Ltd. All rights reserved.