화학공학소재연구정보센터
Bioresource Technology, Vol.100, No.17, 3891-3896, 2009
Feasibility of a two-stage biological aerated filter for depth processing of electroplating-wastewater
A "two-stage biological aerated filter" (T-SBAF) consisting of two columns in series was developed to treat electroplating-wastewater. Due to the low BOD/CODcr values of electroplating-wastewater, "twice start-up" was employed to reduce the time for adaptation of microorganisms, a process that takes up of 20 days. Under steady-state conditions, the removal of CODcr and NH(4)(+) - N increased first and then decreased while the hydraulic loadings increased from 0.75 to 1.5 m(3) m(-2) h(-1). The air/water ratio had the same influence on the removal of CODcr and NH(4)(+) - N when increasing from 3:1 to 6:1. When the hydraulic loadings and air/water ratio were 1.20 m(3) m(-2) h(-1) and 4:1, the optimal removal of CCDcr, NH(4)(+) - N and total-nitrogen (T-N) were 90.13%, 92.51% and 55.46%, respectively. The effluent steadily reached the wastewater reuse standard. Compared to the traditional BAF, the period before backwashing of the T-SBAF could be extended to 10 days, and the recovery time was considerably shortened. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.