Bioresource Technology, Vol.100, No.24, 6317-6323, 2009
Effect of reactor configuration on biogas production from wheat straw hydrolysate
The potential of wheat straw hydrolysate for biogas production was investigated in continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge bed (UASB) reactors. The hydrolysate originated as a side stream from a pilot plant pretreating wheat straw hydrothermally (195 degrees C for 10-12 min) for producing 2nd generation bioethanol [Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P.. Angelidaki, L, 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology 100 (9), 2562-2568]. Results from batch assays showed that hydrolysate had a methane potential of 384 ml/g-volatile solids (VS)(added). Process performance in CTSR and UASB reactors was investigated by varying hydrolysate concentration and/or organic loading rate (OLR). In CSTR, methane yields increased with increase in hydrolysate concentration and maximum yield of 297 ml/g-COD was obtained at an OLR of 1.9 g-COD/ld and 100% (v/v) hydrolysate. On the other hand, process performance and methane yields in UASB were affected by OLR and/or Substrate concentration. Maximum methane yields of 267 ml/g-COD (COD removal of 72%) was obtained in UASB reactor when operated at an OLR of 2.8 g-COD/l d but with only 10% (v/v) hydrolysate. However, co-digestion of hydrolysate with pig manure (1:3 v/v ratio) improved the process performance and resulted in methane yield of 219 ml/g-COD (COD removal of 72%). Thus, anaerobic digestion of hydrolysate for biogas production was feasible in both CSTR and UASB reactor types. However, biogas process was affected by the reactor type and operating conditions. (c) 2009 Elsevier Ltd. All rights reserved.