Bioresource Technology, Vol.102, No.4, 3740-3747, 2011
Model-based design of different fedbatch strategies for phenol degradation in acclimatized activated sludge cultures
Microbial degradation of phenol was studied using batch and fedbatch cultures of acclimatized activated sludge under a wide range of phenol (0-793 mg l(-1)) and biomass (0.74-6.7 g l(-1)) initial concentrations. As cell growth continued after total phenol removal, the production and later consumption of a main metabolic intermediate was considered the step governing the biodegradation kinetics. A model that takes explicitly into account the kinetics of the intermediate was developed by introducing a specific growth rate model associated with its consumption and the incorporation of a dual-substrate inhibitory effect on phenol degradation. Biomass growth and phenol removal were adequately predicted in all the cultures. Moreover, the model-based design of the fedbatch feeding strategies allowed driving separately the phenol degradation under substrate-limitation and substrate-inhibition modes. A sensitivity analysis was also performed in order to establish the importance of the parameters in the accuracy of model predictions. (C) 2010 Elsevier Ltd. All rights reserved.