Bioresource Technology, Vol.102, No.7, 4718-4725, 2011
Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters
A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords:Activated sludge process;Biopolymer clusters (BPC);Membrane fouling;Membrane bioreactor (MBR);Biological wastewater treatment