Current Applied Physics, Vol.10, No.2, 381-385, 2010
Acoustic characteristics of composite materials as acoustic window at oblique incidence of sound waves
This paper described a method for estimating the acoustic characteristics of composite materials at oblique incidence of sound waves. Composite materials are used as acoustic windows of SONAR to protect the internal sensors and electronic parts from water. In this study the composite material of glass reinforced plastic and polyurethane was used as the specimen. As the acoustic characteristics the velocities and attenuation coefficients of sound waves through the composite material were measured in the high frequency range. The insertion loss was also measured as a function of incident angle at 200 and 76 kHz, respectively. The attenuation coefficients in the low frequency range were estimated by interpolating the measured attenuation in the high frequency range with power-law form fitting. A four-medium layer model was proposed to estimate the insertion loss of composite materials at oblique incidence of sound waves in the low frequency range. The four-medium layer model well described the experimentally measured insertion loss at the high frequency range. It suggests that the insertion loss of the composite materials can be well estimated as a function of incident angle in the low frequency range. (C) 2009 Elsevier B.V. All rights reserved.
Keywords:Acoustic window;Insertion loss;Sound wave;Oblique incidence;Four-medium layer model;Longitudinal wave;Transverse wave