Fuel, Vol.82, No.3, 305-317, 2003
Catalytic gasification of coal using eutectic salts: reaction kinetics with binary and ternary eutectic catalysts
Kinetic studies of the catalytic steam gasification of Illinois No. 6 coal were carried out using binary and ternary eutectic salt mixtures in a fixed-bed reactor. The effects of major process variables such as temperature, pressure, catalyst loading and steam flow rate were evaluated for the binary 29% Na2Co3-71% K2CO3 and ternary 43.5% Li2CO3-31.5% Na2CO3-25% K2CO3 eutectic catalyst systems. A Langmuir-Hinshelwood rate expression was developed to explain the reaction mechanism for steam gasification using the binary and ternary catalysts. The activation energy of the ternary catalyst (98 kJ/mol) was less than that of the binary catalyst (201 kJ/mol) or single salt such as K2CO3 (170 kJ/mol). The molar heats of adsorption for the ternary and binary catalysts were exothermic and about 180 and 92 kJ/mol, respectively. The molten nature of the ternary eutectic at the gasification temperatures and its lower activation energy favored higher gasification rates compared to the single and binary alkali metal salts. (C) 2002 Elsevier Science Ltd. All rights reserved.