화학공학소재연구정보센터
Journal of Adhesion, Vol.62, No.1, 1-21, 1997
Effect of plasma-polymerized primers on the durability of aluminum/epoxy adhesive bonds
The durability of aluminum/epoxy adhesive joints prepared from substrates pretreated by plasma etching and then deposition of plasma-polymerized primers was determined using the wedge crack testing method. Plasma etching and polymerization were conducted using both direct current (DC) and microwave (2.45 GHz) driven plasma systems. Plasma-polymerized primers were deposited using trimethysilane (TMS) and hexamethyldisiloxane (HMDSO) to form siloxane-like and silica-like films, respectively. Plasma etching with argon and argon/hydrogen plasmas was used as a substrate pretreatment. In some cases etching with an oxygen plasma was used as a post-treatment to give a silica-like surface to siloxane-like films deposited from TMS. Adhesive joints were prepared using two different epoxy adhesives, Cytec FM-300 and FM-123-2 Differences in initial adhesion were observed for primer films with chemical differences. Siloxane-like primer films were not wetted by the adhesive and resulted in poor wedge test results. Silica-like primer films were not wetted by the adhesive and resulted in poor wedge test results. Silica-like primer films deposited onto aluminum substrates resulted in wedge specimens with good adhesion and durability. The initial crack was cohesive within the adhesive. However, crack growth occurred at the interface between the adhesive and silica-like primer. Durability of the wedge specimens was essentially invariant of the type of microwave plasma pretreatment for grit-blasted aluminum substrates that were coated with silica-like primers before bonding with FM-123-2.