Heat Transfer Engineering, Vol.24, No.2, 60-68, 2003
An estimate of the temperature of semitransparent oxide particles in thermal spraying
A considerable temperature difference in semitransparent oxide particles due to intensive heating in plasma spraying makes it difficult to interpret the optical measurements of their temperature. The problem of determining the bulk temperature of such particles from the experimental data on the color temperature is analyzed by using a recently proposed approximate model for the radiation transfer inside a nonisothermal refracting spherical particle. The same approximation is also employed for developing an improved model of particle heating, taking into account the radiation-conduction interaction inside the particle. Calculations for Al2O3 and ZrO2 particles in a typical plasma jet show that the color temperature of oxide particles may be less than or greater than their bulk temperature, depending on the spectral absorption coefficient of particle substance. This temperature difference during the melting of particles may reach the value of 200-300 K. A procedure for in situ evaluation of the absorption coefficient by comparison of color and brightness temperatures of molten particles is proposed.