Heat Transfer Engineering, Vol.29, No.12, 1018-1026, 2008
Efficiency and optimization of a straight rectangular fin with combined heat and mass transfer
An analysis was carried out to study the efficiency of a straight rectangular fin with a uniform cross-section area when subjected to simultaneous heat and mass transfer mechanisms. The temperature and humidity ratio differences are the driving forces for the heat and mass transfer, respectively. Numerical solutions are obtained for the temperature distribution over the fin surface when the fin surface is dry, fully wet, and partially wet. The psychrometric correlation of an air-water vapor mixture was used to simulate the relation between the temperature and humidity ratio instead of the linear approximate correlations used in the literature. The effect of atmospheric pressure on the fin efficiency was also studied, in addition to fin optimum thickness for specific operating conditions. The numerical solution was compared with those of previous studies in order to find if the linear model in the published analytical results are near to the real situation. It is found that the linear model for the relation between the humidity ratio and the temperature used by Wu and Bong is a reasonable engineering approximation for small values of the fin parameter and at low relative humidities.