초록 |
Solution-processable DTT derivatives, BP-Et-DTT and BT-Et-DTT were synthesized and characterized as solution-processable organic semiconductors for OTFTs. Thermal, optical, and electrochemical properties of the DTT-based semiconductors were investigated. The solution-sheared thin films based on DTT derivatives exhibited p-channel characteristics as an active layer in organic thin-film transistors. The highest hole mobility was 0.32 cm2 V−1s−1 based on BP-Et-DTT thin films. The thin films exhibited micrometer-sized crystalline fiber structures resulting in fiber-alignment-induced charge-transport anisotropy. Furthermore, bulk heterojunction (BHJ) ambipolar transistors were fabricated with an optimized blending ratio of BP-Et-DTT and the representative n-channel semiconductor, PDIFCN2. Complementary-like inverters were fabricated based on the two identical ambipolar transistors, resulting in moderate voltage gains of up to 16. |