초록 |
Recently, the wide color gamut of the white LEDs is an important issue for more realistic colors in displays. Therefore, lead halide perovskite (LHP) nanocrystals (NCs) have attained great attention as the candidates for optoelectronic devices due to their outstanding optical properties. Although, the synthesis and optical characteristics of Cs4PbBr6 solid have been reported, to the best of our knowledge, there has been no report on the large-scale production of the Cs4PbBr6 solid. In this study, we report the mass production of Cs4PbBr6 perovskite microcrystal with a Couette-Taylor flow reactor in order to enhance the efficiency of the synthesis reaction. Through this continuous method, we improved the synthesis scale over 500 times compared with the stirring method and obtained a pure Cs4PbBr6 perovskite solid within 3 hrs that then realized a high photoluminescence quantum yield (PLQY) of 46%. Furthermore, the Cs4PbBr6 perovskite microcrystal is applied with red emitting K2SiF6:Mn4+ phosphor on a blue-emitting InGaN chip, achieving high-performance luminescence characteristics which encompass 118% compared with National Television System Committee (NTSC) value. Therefore, this perovskite is expected to be a promising candidate material for applications in optoelectronic devices. Acknowledgement This research was financially supported by the Ministry of Trade, Industry and Energy(MOTIE) and Korea Institute for Advancement of Technology(KIAT) through the International Cooperative R&D program(P0006844_Development of color conversion nanocrystal luminescence materials for next generation display). |