학회 |
한국화학공학회 |
학술대회 |
2007년 가을 (10/26 ~ 10/27, 한국과학기술원) |
권호 |
13권 2호, p.2092 |
발표분야 |
에너지/환경 |
제목 |
유한한 불규칙적인 공간에서 점탄성 유체의 자연대류 |
초록 |
In the present work, we consider the linear hydrodynamic stability problems of viscoelastic fluids in arbitrary finite domains. The effects of domain shapes on the critical Rayleigh number and convection pattern are investigated by means of a linear stability analysis employing a Chebyshev pseudospectral method. It is shown that the domain shape can change the viscoelastic parameter values where the Hopf bifurcation occurs in the Rayleigh-Bènard convection. The results of the present investigation may be exploited to design shapes of convection box where the Hopf bifurcation occurs at realistic low values of Deborah number. This will enhance the usefulness of the natural convection system as a rheometry tool. |
저자 |
이원민, 임재영, 최영진, 박흥목
|
소속 |
서강대 |
키워드 |
viscoelastic fluid; Rayleigh number
|
E-Mail |
|
원문파일 |
초록 보기 |