초록 |
Ultra-fine grained (UFG) Al alloys, which have submicron grain structures, are expected to show outstanding high strength at ambient temperature and excellent superplastic deformation at elevated temperatures and high strain rate. In order to get the UFG microstructure, various kind of severe plastic deformation (SPD) processes have been developed. Among these processes, accumulative roll bonding (ARB) process is a promising process to make bulky Al sheets with ultrafine grained structure continuously. The purpose of the present study is to clarify the grain refinement mechanism during the ARB process and to investigate on the effects of ultra-fine grained structure on the mechanical properties. In addition, UFG AA8011 alloy (Al-0.72wt%Fe-0.63wt%Si) manufactured by the ARB had fairly large tensile elongation, keeping on the strength. In order to clarify the reason for the increase of elongation in the UFG AA8011 alloy, detailed microstructural and crystallographic analysis was performed by TEM/Kikuchi-line and SEM/EBSP method. The unique tensile properties of the UFG AA8011 alloy could be explained by enhanced dynamic recovery at ambient temperature, owing to the large number of high angle boundaries and the Al matrix with high purity. |