초록 |
Polymers containing organoboronic acids have recently gained interest as sugar-responsive materials owing to the reversible binding of saccharides to boronic acids, which triggers a change in the physical and chemical properties of these polymers, such as their water solubility. We report a new class of sugar-responsive polymers that are based on a sequence-specific copolymer of styreneboroxole and N-functionalized maleimide. The reversible addition-fragmentation and chain transfer (RAFT) polymerization of this pair of monomers ensured that a glucose- receptor alternates with a non-responsive solubilizing group throughout the sugar-responsive polymer chain. Due to the presence of hydrophilic solubilizing groups beween the solubility- switching boroxole moieties in the membrane-forming block, the polymersomes of the block copolymers responded to a lower level of glucose in the medium, resulting in diassembly of the bilayer membrane under a physiologically relevant pH and glucose-level. |