초록 |
The fabrication of organic light-emitting diodes (OLEDs) composed of multi-layered structure through a solution-based process suffers from the dissolution of the preformed lower parts during the coating of upper layers. To prevent this problem during the solution process, a promising approach of introducing a cross-linkable layer with a high solvent-resistivity has been proposed. Herein, thermally cross-linkable spirobifluorene-core-incorporated hole transport layers (HTLs) with a cross-linking temperature of 180 ˚C are designed for solution-processible OLEDs composed of multi-layered structures. Consequently, the OLED composed of thermally cross-linkable HTL shows higher quantum efficiency (QE) of 16.5% and lower operation voltage of 5.1 V at 1000 cd/m2 , compared to that composed of a commercialized polymer, poly (9-vinyl-carbazole) (PVK) |