초록 |
Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and 750 °C. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 μm for 10 min while below 90 sec and over 420 sec 300~830 μm-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening. |