초록 |
We introduce a biotemplating approach for creating highly entangled hollow TiO2 nanoribbons by combining peptide assembly with an atomic layer deposition process. An aromatic peptide of diphenylalanine was readily assembled into a hierarchical organogel consisting of highly entangled nanoribbons. Unlike ordinary biomaterials, the peptide nanoribbon framework exhibited a high level of thermal stability, such that it may undergo the further functionalization process of vacuum deposition without significant damage to its nanoscale structure. A nanoscale layer of anatase TiO2 was deposited on the nanoribbon framework by means of atomic layer deposition. After pyrolysis, a highly entangled nanotubular TiO2 framework was created successfully. The highly entangled TiO2 architecture exhibited UV-switchable wetting properties. |