Chapter 1

INTRODUCTION

1.1 Terminology

Process An actual series of operations or treatments of materials or physical, chemical, biological phenomena involved in these operations or treatments

- large scale: chemical plant $\mathcal{O}(10-100)$ m
- medium scale: unit operation, distillation column, chemical reactor, CVD reactor $\mathcal{O}(1)$ m
- small scale: drop formation, combustion of coal particles, reaction on the catalyst surface $\mathcal{O}(1)$ mm
- micro scale: deposition of metal on the wafer, diffusion through porous catalyst $\mathcal{O}(1)$ m
- nano scale: nano crystal formation, molecular reaction $\mathcal{O}(1)$ Å- nm

Model Mathematical description of the real process

Simulation Substitution of real process

- Numerical simulation
- Experimental simulation

1.2 Model

- Deterministic model: eg. Transport phenomena model
- Stochastic model: eg. Population balance model
- Empirical model: eg. Use of polynomial to fit empirical data

1.3 Process analysis step

See Fig.1-1

1.4 Goal of modelling and simulation

- Understanding \longrightarrow insight
- Solution \longrightarrow numbers

1.5 Mathematical model

- 1. Mathematically well-posed
 - (a) Existence
 - (b) Continuity
- 2. Discretization
 - (a) time: $t \to \Delta t$
 - (b) space: $x, y, z \to \Delta x, \Delta y, \Delta z$
 - finite difference method
 - finite volume method
 - finite element method
 - spectral method

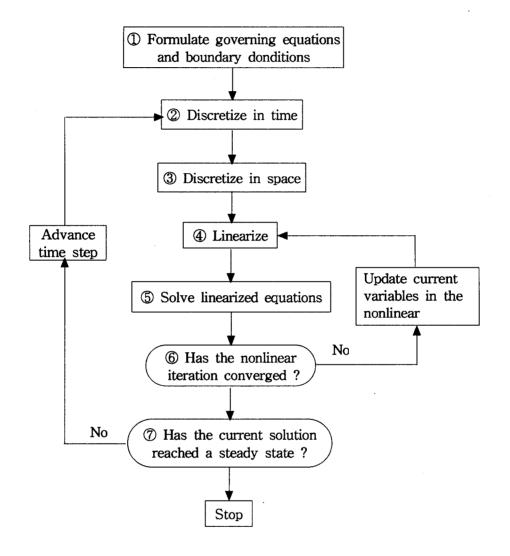


Figure 1.1: Process analysis step.

$$\begin{array}{ccc} \text{PDE} & \text{discretize} & \frac{d\boldsymbol{u}}{dt} = \boldsymbol{R}(\boldsymbol{u}) \\ (t, x, y, z) & (\text{ODE}) \\ & \text{time integration} \\ & \stackrel{\text{limearize}}{\longrightarrow} & \text{Nonlinear algebraic equation} \\ & \stackrel{\text{linearize}}{\longrightarrow} & \text{Linear algebraic equation} \\ & \stackrel{\text{order}}{\longrightarrow} & \text{solution} \end{array}$$

- 3. Is the numerical solution right?
 - function approximation
 - convergence of discrete set (As $\Delta x \to 0, \varepsilon \to 0$))
 - stability theorem

1.6 Lax equivalence theorem

Lax equivalence theorem: Given a properly posed initial boundary balue problem and a finite difference approximation to it that satisfies consistency condition, then stability is the necessary and sufficient condition for convergence.

• Consistency

Finite difference equation is said to be consistent (compatible) with the differential equation if the local truncation errors tend to zero as $\Delta t, \Delta x \to 0$.

• Stability

$$|\varepsilon^n| < K(n\Delta t) \quad (n\Delta t \text{ fixed}, n \to \infty, \Delta t \to 0)$$

• Convergence

$$\|\theta^n - \Theta^n\| \to 0 \quad (n\Delta t \text{ fixed}, n \to \infty, \Delta t \to 0)$$

Chapter 2

BASICS OF LINEAR ALGEBRA

2.1 Matrices and Determinants

2.1.1 Matrix

Matrix: Array of elements arranged in rows and columns

$$\underline{\underline{A}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

 $m \times n$ matrix, $\underline{\underline{A}} \in \Re^{m \times n}$

where

$$\{a_{ij}\}, i = 1, \dots, m \text{ and } j = 1, \dots, n : \text{set of elements of } \underline{\underline{A}}$$

Column vector: $m \times 1$ matrix

$$\underline{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$

2.1.2 Diagonal matrix

Diagonal matrix: $a_{ij} = 0$ for $i \neq j$.

$$a_{ij} = a_j \delta_{ij}, \text{ where } \delta_{ij} = \begin{pmatrix} 0 & i \neq j \\ 1 & i = j \end{pmatrix}$$

2.1.3 Triangular matrices

Upper triangular matrix	<u>U</u> =	$\left[\begin{array}{rrrr} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{array}\right]$
Lower triangular matrix		$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$

2.1.4 Transpose

Transpose: $\underline{\underline{A}}^T$ (elements: a_{ij}^T)

$$a_{ij}^T = a_{ji}$$

 \underline{a}^T : row vector (transpose of column vector)

2.1.5 Symmetric matrix

For symmetric matrix,

$$\underline{\underline{A}} = \underline{\underline{A}}^T$$
$$a_{ij} = a_{ji}$$

2.1.6 Partitioned matrix

$$\underline{\underline{A}} = \begin{bmatrix} \underline{\underline{A}}_{11} & \underline{\underline{A}}_{12} & \cdots & \underline{\underline{A}}_{1l} \\ \underline{\underline{A}}_{21} & \underline{\underline{A}}_{22} & \cdots & \underline{\underline{A}}_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ \underline{\underline{A}}_{k1} & \underline{\underline{A}}_{k2} & \cdots & \underline{\underline{A}}_{kl} \end{bmatrix}$$

where each $\underline{\underline{A}}_{ij}$ is a $m_i \times n_j$ matrix.

Partitioning with column vector

$$\underline{\underline{A}} = [\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n]$$

For $\underline{\underline{A}} \underline{x} = \underline{b}$,

$$\underline{\underline{A}} \underline{x} = [\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$= x_1 \underline{a}_1 + x_2 \underline{a}_2 + \dots + x_n \underline{a}_n$$
$$= \underline{b}$$

This says that $\underline{\underline{A}} \underline{x}$ is a linear combination of the columns of $\underline{\underline{A}}$.

2.1.7 Rank

Rank of $\underline{\underline{A}} \in \Re^{m \times n}$

Ex) For the matrix

$$\underline{\underline{A}} = \begin{bmatrix} 2 & 1 & 3 & 4 \\ -1 & 1 & -2 & -1 \\ 0 & 3 & -1 & 2 \end{bmatrix}$$

det of all 3×3 matrices = $0 \longrightarrow \operatorname{rank}(\underline{A}) = 2$.

For a square matrix <u>A</u> of order n,
If rank(<u>A</u>) < n, then det(<u>A</u>) = 0. That is, <u>A</u> is singular.

2.1.8 Conforming matrices

If $\underline{\underline{A}} \in \Re^{n \times m}$, $\underline{\underline{B}} \in \Re^{p \times q}$, then the two matrices are conformable if m = p. Multiplication of two conforming matrices is defined as $\underline{\underline{A}} \underline{\underline{B}} = \underline{\underline{C}}$, where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

• If \underline{B} is non-singular and \underline{A} and \underline{B} are conformable, then

 $\operatorname{rank}(\underline{\underline{B}} \cdot \underline{\underline{A}}) = \operatorname{rank}(\underline{\underline{A}})$

2.1.9 Identity matrix operation

1. \underline{I}_{ij} is the identity matrix (or idenfactor) with rows *i* and *j* interchanged.

• Example

$$\underline{\underline{I}}_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \longrightarrow \det(\underline{\underline{I}}_{23}) = -1$$

- $\det(\underline{I}_{ij}) = -1$
- $\underline{\underline{I}}_{ij}\underline{\underline{A}}$: change *i*th row and *j*th row of $\underline{\underline{A}}$.
- 2. $\underline{J}_{ij}(k)$: \underline{I} with k in (i, j) position
 - Example

$$\underline{\underline{J}}_{23}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}$$

• $det(\underline{J}_{ij}(k)) = 1$ except when k = 0 and i = j.

$$\underline{\underline{J}}_{23}(k) \cdot \underline{\underline{A}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + ka_{31} & a_{22} + ka_{32} & a_{23} + ka_{33} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

multiplies third row of $\underline{\underline{A}}$ by k and adds it to the second row.

2.1.10 Determinant

• Determinant of square $(n \times n)$ matrix

$$\det(\underline{A}) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$
$$= \sum (-1)^h \underbrace{(a_{1l_1}a_{2l_2}\cdots a_{nl_n})}_{n \text{ elements}}$$
from each row

• For the matrix

$$\underline{\underline{A}} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

determinant is

$$\det(\underline{\underline{A}}) = (-1)^0 a_{11} a_{22} + (-1)^1 a_{12} a_{21}$$

2.1.11 Laplace's expansion

$$\det \underline{\underline{A}} = \sum_{j=1}^{n} a_{ij} \operatorname{cof}(a_{ij}) \text{ for } i = 1, 2, \dots, n$$

or

$$\det \underline{\underline{A}} = \sum_{i=1}^{n} a_{ij} \operatorname{cof}(a_{ij}) \text{ for } j = 1, 2, \dots, n$$

• compliment of a_{ij}

- determinant formed by striking out i-th row and j-th column of an $n\times n$ matrix
- determinant of (n-1) order
- Example. For the matrix

$$\underline{\underline{A}} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

complement of a_{22} is

$$\operatorname{comp}(a_{22}) = \begin{vmatrix} a_{11} & a_{13} & a_{14} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix}$$

- Minor of \underline{A} is formed by striking out rows and/or columns of \underline{A} .
- cofactor of a_{ij}

$$\operatorname{cof}(a_{ij}) = (-1)^{i+j} \operatorname{comp}(a_{ij})$$

2.1.12 Properties of determinant

- 1. $\det(\underline{A}) = \det(\underline{A}^T)$
- 2. If all the elements of any row or column of $\underline{\underline{A}}$ are zero, $\det(\underline{\underline{A}}) = 0$.
- 3. If the elements of one row or one column of a matrix are multiplied by a constant c, then the determinant is multiplied by c.

 $\det(c\underline{A}) = c^n \det(\underline{A})$

- 4. The sign of determinant is changed if two columns or rows have their positions interchanged.
- 5. If \underline{A} and \underline{B} differ only in their kth columns, then

 $\det(\underline{A}) + \det(\underline{B}) = \det(\underline{C})$

where $\underline{\underline{C}}$ is $\underline{\underline{A}}$ with kth column replaced by sum of kth column of $\underline{\underline{A}}$ and $\underline{\underline{B}}$.

$$det(\underline{a}_1, \underline{a}_2, \dots, \underline{a}_k, \dots, \underline{a}_n) + det(\underline{a}_1, \underline{a}_2, \dots, \underline{b}_k, \dots, \underline{a}_n) = det(\underline{a}_1, \underline{a}_2, \dots, \underline{a}_k + \underline{b}_k, \dots, \underline{a}_n)$$

- 6. If $\underline{\underline{A}}$ has two identical rows or columns, $\det(\underline{\underline{A}}) = 0$.
 - If any row (or column) of a matrix is a multiple of any other row (or column), then its determinant is zero.
- 7. The value of a determinant is unchanged if a multiple of one row (or column) is added to another row (or column).

$$\det \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix} = \det \begin{bmatrix} a_{11} & \cdots & a_{1j} + ca_{1q} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj} + ca_{nq} & \cdots & a_{nn} \end{bmatrix}$$

8. $\det \underline{\underline{A}} \underline{\underline{B}} = \det \underline{\underline{A}} \det \underline{\underline{B}}$

2.1.13 Inverse of $\underline{\underline{A}}$

 $\underline{\underline{A}}^{-1}\underline{\underline{A}} = \underline{\underline{I}}$

• Cofactor matrix $\underline{\underline{C}}$.

$$\underline{\underline{C}} = \begin{bmatrix} \operatorname{cof}(a_{11}) & \operatorname{cof}(a_{12}) & \cdots & \operatorname{cof}(a_{1n}) \\ \operatorname{cof}(a_{21}) & \operatorname{cof}(a_{22}) & \cdots & \operatorname{cof}(a_{2n}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cof}(a_{n1}) & \operatorname{cof}(a_{n2}) & \cdots & \operatorname{cof}(a_{nn}) \end{bmatrix}$$

• Adjoint matrix of $\underline{\underline{A}}$.

$$\operatorname{adj}(\underline{\underline{A}}) \equiv \underline{\underline{C}}^T$$

We multiply $\underline{\underline{A}}$ and $\operatorname{adj}(\underline{\underline{A}})$,

$$\underline{\underline{A}} \operatorname{adj}(\underline{\underline{A}}) = \underline{\underline{B}}$$

where

$$b_{ij} = \sum_{k=1}^{n} a_{ik} \operatorname{cof}(a_{jk})$$

Elements b_{ii} (diagonal)

$$b_{ii} = \sum_{k=1}^{n} a_{ik} \operatorname{cof}(a_{ik}) = \det(\underline{\underline{A}})$$

Elements $b_{ij} \ (i \neq j)$ (off-diagonal)

Laplace's expansion of matrix j-th row replaced by i-th row \Downarrow i-th row appears twice \Downarrow 0 This leads to

$$\underline{\underline{A}} \operatorname{adj}(\underline{\underline{A}}) = \operatorname{det}(\underline{\underline{A}}) \underline{\underline{I}}$$

By dividing both sides by $\det(\underline{\underline{A}})$ (for $\det(\underline{\underline{A}}) \neq 0$),

$$\frac{\underline{\underline{A}} \operatorname{adj}(\underline{\underline{A}})}{\operatorname{det}(\underline{\underline{A}})} = \underline{\underline{I}}$$

From $\underline{\underline{A}\underline{A}}^{-1} = \underline{\underline{I}},$

$$\underline{\underline{A}}^{-1} = \frac{\operatorname{adj}(\underline{\underline{A}})}{\operatorname{det}(\underline{\underline{A}})}$$