2.2 Linear Vector Space

2.2.1 Linear vector space

- **Def** A set \mathcal{V} is defined as a **linear vector space** over a scalar field \mathcal{F} , if the operation of addition is defined for members of \mathcal{V} and multiplication of elements of \mathcal{V} by an element of the field \mathcal{F} is defined. That is,
 - 1. If $\underline{x} \in \mathcal{V}, y \in \mathcal{V}$, then $\underline{x} + y \in \mathcal{V}$ and unique.
 - 2. If $\underline{x} \in \mathcal{V}, \alpha \in \mathcal{F}$, then $\alpha \underline{x} \in \mathcal{V}$.

These operations must obey the following properties.

- 1. $\underline{x} + y = y + \underline{x}$
- 2. $(\underline{x} + y) + \underline{z} = \underline{x} + (y + \underline{z})$
- 3. There is a unique vector $\underline{0}$ in \mathcal{V} , called zero vector, such that

 $\underline{x} + \underline{0} = \underline{x}$ for all $\underline{x} \in \mathcal{V}$

4. For each vector $\underline{x} \in \mathcal{V}$, there is a unique vector $-\underline{x}$ such that

 $\underline{x} + (-\underline{x}) = \underline{0}$

- 5. $1\underline{x} = \underline{x}$ for all $\underline{x} \in \mathcal{V}$.
- 6. If $\alpha, \beta \in \mathcal{F}$, then $\alpha(\beta \underline{x}) = (\alpha \beta) \underline{x}$ for all $\underline{x} \in \mathcal{V}$.
- 7. If $\alpha \in \mathcal{F}, \underline{x}, y \in \mathcal{V}$, then $\alpha(\underline{x} + y) = \alpha \underline{x} + \alpha y$
- 8. If $\alpha, \beta \in \mathcal{F}, \underline{x} \in \mathcal{V}$, then $(\alpha + \beta)\underline{x} = \alpha \underline{x} + \beta \underline{x}$

Example

- \Re^n : Collection of all *n*-dimensional vectors with real components
- \mathcal{C}^n : Collection of all *n*-dimensional vectors with complex components
- $\Re^{m \times n}$: Collection of all $m \times n$ matrices with real components

2.2.2 Linearly independent set

Def A set of vectors $\{\underline{x}_i\} \in \Re^n$ is said to be **linearly dependent** if there exists n scalars $\{\alpha_i\} \in \Re$, such that

$$\alpha_1 \underline{x}_1 + \alpha_2 \underline{x}_2 + \dots + \alpha_n \underline{x}_n = 0$$

where not all of the $\{\alpha_i\}$ are zero.

If no such set of scalars exists, the vectors $\{\underline{x}_i\}$ are **linearly independent**.

For linearly dependent set, one of the vectors can be written as a **linear combination** of the other elements in the space.

$$\underline{x}_1 = -\frac{1}{\alpha_1} \sum_{j=2}^n \alpha_j \underline{x}_j$$

Example in \Re^3

Most obvious example of a linearly independent set

$$\underline{e}_{1}^{T} = (1, 0, 0)$$

$$\underline{e}_{2}^{T} = (0, 1, 0)$$

$$\underline{e}_{3}^{T} = (0, 0, 1)$$

These are called base vectors or basis.

Example in $\Re^{2 \times 2}$

Basis

$$\left[\begin{array}{rrr}1&0\\0&0\end{array}\right], \left[\begin{array}{rrr}0&1\\0&0\end{array}\right], \left[\begin{array}{rrr}0&0\\1&0\end{array}\right], \left[\begin{array}{rrr}0&0\\0&1\end{array}\right]$$

2.2.3 Subspace

Def Let \mathcal{W} be a non-empty subset of \mathfrak{R}^n . Then, \mathcal{W} is a subspace of \mathfrak{R}^n if

1. $\underline{x}, \underline{y} \in \mathcal{W}$ implies $(\underline{x} + \underline{y}) \in \mathcal{W}$

2. $\underline{x} \in \mathcal{W}$ and $\alpha \in \Re$ implies $\alpha \underline{x} \in \mathcal{W}$.

Ex 1: All vectors of the form $\underline{x}^T = (\alpha_1, \alpha_2, \dots, \alpha_r, 0, \dots, 0)$. (last n - r elements of the vector are zero).

Ex 2: All 2×2 matrices that are symmetric. \mathcal{W} is a subset of $\Re^{2 \times 2}$.

Theorem Let \mathcal{A} be a set of vectors in \mathbb{R}^n and let \mathcal{W} be the set of all linear combination of elements in \mathcal{A} , Then, \mathcal{W} is a subspace of \mathbb{R}^n and each elements in \mathcal{W} is written as

 $y = \alpha_1 \underline{x}_1 + \alpha_2 \underline{x}_2 + \dots + \alpha_m \underline{x}_m$

where $\{\underline{x}_i\} \in \mathcal{A}$, can $\{\alpha_i\} \in \Re$.

- **Def** Let $\mathcal{W} \subset \Re^n$ be a subspace and let \mathcal{B} a set of vectors from \Re^n . Then \mathcal{B} is a basis for \mathcal{W} if
 - 1. the elements of \mathcal{B} are linearly independent
 - 2. \mathcal{B} spans or generates \mathcal{W} , that is each vector in \mathcal{W} is a linear combination of elements of \mathcal{B} .
- **Def** If \mathcal{W} is a subspace of \Re^n , the dimension of \mathcal{W} is the number of elements in a basis for \mathcal{W} .
- **Theorem** The dimension of a subspace \mathcal{W} is unique even though the components of the basis are not.

2.2.4 Linear dependence

Linear dependence of a set of n vectors:

For $(\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n)$ (each $\underline{a}_i \in \Re^n$) and for a set of numbers $\{\alpha_i\} \in \Re$,

 $\underline{a}_1\alpha_1 + \underline{a}_2\alpha_2 + \dots + \underline{a}_n\alpha_n = 0$

where each vector \underline{a}_i can be written as

$$\underline{a}_i^T = (a_{1i}, a_{2i}, \dots, a_{ni})$$

Then,

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} \alpha_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} \alpha_2 + \dots + \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{bmatrix} \alpha_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

In matrix form

$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}	• • •	a_{1n}	α_1		$\begin{bmatrix} 0 \end{bmatrix}$	
a_{21} .	a_{22}		a_{2n}	α_2		0	
:	÷	۰.	:	÷	=	÷	
a_{n1}	a_{n2}	• • •	a_{nn}	α_n		0	

or

$$\underline{\underline{A}} \ \underline{\underline{\alpha}} = \underline{0}$$

That is, linear dependence \equiv nontrivial solution (other than $\underline{\alpha} = \underline{0}$) of homogeneous linear equation

- **case I** If $\operatorname{rank}(\underline{A}) = n$, the inverse matrix is well-defined and $\underline{\alpha} = \underline{0}$ is the unique solution $\longrightarrow {\underline{a}_i}$ is linearly independent
- **case II** For the matrix with $rank(\underline{A}) = n 1$ Assume an ordering

a_{11}	a_{12}	•••	$a_{1,n-1}$	a_{1n}	α_1		0	
a_{21}	a_{22}		$a_{2,n-1}$	a_{2n}	α_2		0	
:	:	·	÷	:	:	=	÷	
$a_{n-1,1}$	$a_{n-1,2}$		$a_{n-1,n-1}$	$a_{n-1,n}$	α_{n-1}		0	
a_{n1}	a_{n2}		$a_{n,n-1}$		$\begin{array}{c} \alpha_2 \\ \vdots \\ \alpha_{n-1} \\ \alpha_n \end{array}$		0	
a_{n1}	a_{n2}	•••	$a_{n,n-1}$	a_{nn}	α_n			

For submatrix $\underline{\underline{\tilde{A}}}$,

$$\underline{\tilde{A}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} \\ a_{21} & a_{22} & \cdots & a_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n-1} \end{bmatrix}$$

 $det(\underline{\tilde{A}}) \neq 0 \longrightarrow \underline{\tilde{A}}^{-1}$ exists. Neglecting the last row,

$$\underline{\tilde{A}} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{n-1} \end{bmatrix} = -\alpha_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{n-1,n} \end{bmatrix}$$

 \longrightarrow Assume α_n , then we can determine $\alpha_1, \ldots, \alpha_{n-1}$.

 \longrightarrow Then,

$$\underline{a}_1\alpha_1 + \dots + \underline{a}_{n-1}\alpha_{n-1} + \underline{a}_n\alpha_n = 0$$

 $\longrightarrow \underline{a}_n$ is a linear combination of the first n-1 vectors. That is, $\{\underline{a}_i\}$ is linearly dependent

2.3 Linear Transformation and Linear Equation Sets

2.3.1 Linear transformation

- $n \times m$ matrix transformation that takes an element of \Re^m into an element of \Re^n .
 - has the properties of linear transformation

Def A linear transformation from \Re^m to \Re^n is a matrix $\underline{A}: \Re^m \to \Re^n$ such that

$$\underline{A}(\alpha \underline{x} + \beta y) = \alpha \underline{A} \, \underline{x} + \beta \underline{A} \, y$$

where $\underline{x}, y \in \Re^m, \alpha, \beta \in \Re$.

2.3.2 Range and null space

Def If $\underline{\underline{A}} \in \Re^{n \times m}$, the subspace of \Re^n spanned by the columns $\{\underline{a}_i\}, i = 1, \dots, m$ of $\underline{\underline{A}}$ is called the **range** of $\underline{\underline{A}}$ and is written as $\mathcal{R}(\underline{\underline{A}})$.

 $\dim(\mathcal{R}(\underline{A})) =$ number of linearly independent columns of \underline{A}

Def For $\underline{\underline{A}} \in \Re^{n \times m}$, the **null space** of $\underline{\underline{A}}, \mathcal{N}(\underline{\underline{A}})$, is the subspace of \Re^m formed by all vectors, \underline{x} such that $\underline{\underline{A}} \underline{x} = 0$.

 $\dim(\mathcal{N}(\underline{A})) = \text{dimension of the basis of } \mathcal{N}(\underline{A})$

2.3.3 Homogeneous equation set

For homogeneous equation set $\underline{\underline{A}} \underline{x} = \underline{0}$, following theorem holds.

Theorem If $\underline{\underline{A}} \in \Re^{n \times m}$, the null space of $\underline{\underline{A}}, \mathcal{N}(\underline{\underline{A}})$, has $\dim(\mathcal{N}(\underline{\underline{A}})) = m - r$ where $r = \operatorname{rank}(\underline{\underline{A}})$. If r = m, then $\underline{x} = \underline{0}$ is the only solution.

2.3.4 Nonhomogeneous equation set

- **Theorem** Let $\underline{\underline{A}} \in \Re^{n \times m}$ and $\underline{\underline{A}} = (\underline{a}_1, \underline{a}_2, \dots, \underline{a}_m)$ where $\underline{a}_i \in \Re^n$. Then, $\underline{\underline{A}} \underline{x} = \underline{b}$, where $\underline{b} \in \Re^n$, has a solution $\underline{x} \in \Re^m$ (*i.e.*, is soluble) iff $\dim(\underline{a}_1, \underline{a}_2, \dots, \underline{a}_m, \underline{b})$ is equal to $\dim(\mathcal{R}(\underline{\underline{A}}))$. That is \underline{b} is a linear combination of $\{\underline{a}_i\}$.
- **Theorem** Let $\underline{\underline{A}} \in \Re^{n \times m}$. If $\underline{\underline{b}} \in \mathcal{R}(\underline{\underline{A}})$ and $\dim(\mathcal{R}(\underline{\underline{A}})) = m$, then $\underline{\underline{A}} \underline{x} = \underline{\underline{b}}$ possesses a unique solution.

Theorem Let $\underline{\underline{A}} \in \Re^{n \times m}$ and $\underline{b} \in \mathcal{R}(\underline{\underline{A}})$. If $\operatorname{rank}(\underline{\underline{A}}) = r < m$, then $\underline{\underline{A}} \underline{x} = \underline{b}$ has the general solution $\underline{x} = \underline{x}_o + \underline{z}$ where \underline{x}_o is a particular solution of $\underline{\underline{A}} \underline{x} = \underline{b}$ and \underline{z} is any solution of the corresponding problem $\underline{\underline{A}} \underline{x} = \underline{0}$. *i.e.* $\underline{z} \in \mathcal{N}(\underline{\underline{A}})$ where $\dim(\mathcal{N}(\underline{\underline{A}})) = m - r$.