2.2 Linear Vector Space

2.2.1 Linear vector space

- **Def** A set V is defined as a **linear vector space** over a scalar field \mathcal{F} , if the operation of addition is defined for members of V and multiplication of elements of V by an element of the field $\mathcal F$ is defined. That is,
	- 1. If $\underline{x} \in \mathcal{V}, y \in \mathcal{V}$, then $\underline{x} + y \in \mathcal{V}$ and unique.
	- 2. If $\underline{x} \in \mathcal{V}, \alpha \in \mathcal{F}$, then $\alpha \underline{x} \in \mathcal{V}$.

These operations must obey the following properties.

- 1. $\underline{x} + y = y + \underline{x}$
- 2. $(\underline{x} + y) + \underline{z} = \underline{x} + (y + \underline{z})$
- 3. There is a unique vector $\underline{0}$ in V , called zero vector, such that

 $x + 0 = x$ for all $x \in \mathcal{V}$

4. For each vector $\underline{x} \in \mathcal{V}$, there is a unique vector $-\underline{x}$ such that

 $x + (-x) = 0$

- 5. $1x = x$ for all $x \in \mathcal{V}$.
- 6. If $\alpha, \beta \in \mathcal{F}$, then $\alpha(\beta x) = (\alpha \beta)x$ for all $x \in \mathcal{V}$.
- 7. If $\alpha \in \mathcal{F}, \underline{x}, y \in \mathcal{V}$, then $\alpha(\underline{x} + y) = \alpha \underline{x} + \alpha y$
- 8. If $\alpha, \beta \in \mathcal{F}, x \in \mathcal{V}$, then $(\alpha + \beta)x = \alpha x + \beta x$

Example

- \mathbb{R}^n : Collection of all *n*-dimensional vectors with real components
- \mathcal{C}^n : Collection of all *n*-dimensional vectors with complex components
- $\mathbb{R}^{m \times n}$: Collection of all $m \times n$ matrices with real components

2.2.2 Linearly independent set

Def A set of vectors $\{x_i\} \in \mathbb{R}^n$ is said to be **linearly dependent** if there exists n scalars $\{\alpha_i\} \in \Re$, such that

$$
\alpha_1 \underline{x}_1 + \alpha_2 \underline{x}_2 + \cdots + \alpha_n \underline{x}_n = 0
$$

where not all of the $\{\alpha_i\}$ are zero.

If no such set of scalars exists, the vectors $\{x_i\}$ are **linearly independent**.

For linearly dependent set, one of the vectors can be written as a **linear combination** of the other elements in the space.

$$
\underline{x}_1 = -\frac{1}{\alpha_1} \sum_{j=2}^n \alpha_j \underline{x}_j
$$

Example in \mathbb{R}^3

Most obvious example of a linearly independent set

$$
\begin{aligned}\n\underline{e}_1^T &= (1, 0, 0) \\
\underline{e}_2^T &= (0, 1, 0) \\
\underline{e}_3^T &= (0, 0, 1)\n\end{aligned}
$$

These are called base vectors or basis.

Example in $\Re^{2\times 2}$

Basis

$$
\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]
$$

2.2.3 Subspace

Def Let W be a non-empty subset of \mathbb{R}^n . Then, W is a subspace of \mathbb{R}^n if

1. $\underline{x}, \underline{y} \in \mathcal{W}$ implies $(\underline{x} + \underline{y}) \in \mathcal{W}$

2. $x \in \mathcal{W}$ and $\alpha \in \Re$ implies $\alpha x \in \mathcal{W}$.

Ex 1: All vectors of the form $\underline{x}^T = (\alpha_1, \alpha_2, \ldots, \alpha_r, 0, \ldots, 0)$. (last $n - r$ elements of the vector are zero).

Ex 2: All 2×2 matrices that are symmetric. W is a subset of $\mathbb{R}^{2 \times 2}$.

Theorem Let A be a set of vectors in \mathbb{R}^n and let W be the set of all linear combination of elements in A, Then, W is a subspace of \mathbb{R}^n and each elements in W is written as

$$
\underline{y} = \alpha_1 \underline{x}_1 + \alpha_2 \underline{x}_2 + \cdots + \alpha_m \underline{x}_m
$$

where $\{x_i\} \in \mathcal{A}$, can $\{\alpha_i\} \in \Re$.

- **Def** Let $W \subset \mathbb{R}^n$ be a subspace and let B a set of vectors from \mathbb{R}^n . Then B is a basis for W if
	- 1. the elements of β are linearly independent
	- 2. B spans or generates W, that is each vector in W is a linear combination of elements of B.
- **Def** If W is a subspace of \mathbb{R}^n , the dimension of W is the number of elements in a basis for W.
- **Theorem** The dimension of a subspace W is unique even though the components of the basis are not.

2.2.4 Linear dependence

Linear dependence of a set of n vectors:

For $(\underline{a}_1, \underline{a}_2, \ldots, \underline{a}_n)$ (each $\underline{a}_i \in \Re^n$) and for a set of numbers $\{\alpha_i\} \in \Re$,

 $\underline{a}_1\alpha_1 + \underline{a}_2\alpha_2 + \cdots + \underline{a}_n\alpha_n = 0$

where each vector \underline{a}_i can be written as

$$
\underline{a}_i^T = (a_{1i}, a_{2i}, \dots, a_{ni})
$$

Then,

$$
\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} \alpha_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} \alpha_2 + \cdots + \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{bmatrix} \alpha_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}
$$

In matrix form

or

$$
\underline{A} \underline{\alpha} = \underline{0}
$$

That is, linear dependence \equiv nontrivial solution (other than $\underline{\alpha} = \underline{0}$) of homogeneous linear equation

- **case I** If $\text{rank}(\underline{A}) = n$, the inverse matrix is well-defined and $\underline{\alpha} = \underline{0}$ is the unique solution $\longrightarrow \{\underline{a}_i\}$ is linearly independent
- **case II** For the matrix with $\text{rank}(\underline{\underline{A}}) = n 1$ Assume an ordering

For submatrix $\underline{\tilde{A}}$,

$$
\underline{\underline{\tilde{A}}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} \\ a_{21} & a_{22} & \cdots & a_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n-1} \end{bmatrix}
$$

 $\det(\underline{\underline{\tilde{A}}}) \neq 0 \longrightarrow \underline{\tilde{A}}^{-1}$ exists. Neglecting the last row,

$$
\underline{\underline{\tilde{A}}}\begin{bmatrix}\n\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_{n-1}\n\end{bmatrix} = -\alpha_n \begin{bmatrix}\na_{1n} \\
a_{2n} \\
\vdots \\
a_{n-1,n}\n\end{bmatrix}
$$

 \longrightarrow Assume α_n , then we can determine $\alpha_1, \ldots, \alpha_{n-1}$.

 \longrightarrow Then,

$$
\underline{a}_1\alpha_1 + \dots + \underline{a}_{n-1}\alpha_{n-1} + \underline{a}_n\alpha_n = 0
$$

 $\longrightarrow \underline{a}_n$ is a linear combination of the first $n-1$ vectors. That is, $\{a_i\}$ is linearly dependent

2.3 Linear Transformation and Linear Equation Sets

2.3.1 Linear transformation

- $n \times m$ **matrix** transformation that takes an element of \mathbb{R}^m into an element of \mathbb{R}^n .
	- has the properties of linear transformation

Def A linear transformation from \mathbb{R}^m to \mathbb{R}^n is a matrix $\underline{\underline{A}} : \mathbb{R}^m \to \mathbb{R}^n$ such that

$$
\underline{A}(\alpha \underline{x} + \beta \underline{y}) = \alpha \underline{A} \underline{x} + \beta \underline{A} \underline{y}
$$

where $\underline{x}, \underline{y} \in \Re^m, \alpha, \beta \in \Re$.

2.3.2 Range and null space

Def If $\underline{A} \in \mathbb{R}^{n \times m}$, the subspace of \mathbb{R}^n spanned by the columns $\{\underline{a}_i\}, i = 1, \ldots, m$ of \underline{A} is called the **range** of \underline{A} and is written as $\mathcal{R}(\underline{A})$.

 $\dim(\mathcal{R}(\underline{\underline{A}}))$ = number of linearly independent columns of $\underline{\underline{A}}$

Def For $\underline{A} \in \mathbb{R}^{n \times m}$, the **null space** of \underline{A} , $\mathcal{N}(\underline{A})$, is the subspace of \mathbb{R}^m formed by all vectors, <u>x</u> such that $\underline{A} \underline{x} = 0$.

 $\dim(\mathcal{N}(\underline{\underline{A}})) =$ dimension of the basis of $\mathcal{N}(\underline{\underline{A}})$

2.3.3 Homogeneous equation set

For homogeneous equation set $\underline{A} \underline{x} = \underline{0}$, following theorem holds.

Theorem If $\underline{A} \in \mathbb{R}^{n \times m}$, the null space of \underline{A} , $\mathcal{N}(\underline{A})$, has $\dim(\mathcal{N}(\underline{A})) = m - r$ where $r = \text{rank}(\underline{A})$. If $r = m$, then $\underline{x} = \underline{0}$ is the only solution.

2.3.4 Nonhomogeneous equation set

- **Theorem** Let $\underline{A} \in \mathbb{R}^{n \times m}$ and $\underline{A} = (\underline{a_1}, \underline{a_2}, \dots, \underline{a_m})$ where $\underline{a_i} \in \mathbb{R}^n$. Then, $\underline{A} \underline{x} = \underline{b}$, where $\underline{b} \in \mathbb{R}^n$, has a solution $\underline{x} \in \mathbb{R}^m$ (*i.e.*, is soluble) iff $\dim(\underline{a}_1, \underline{a}_2, \ldots, \underline{a}_m, \underline{b})$ is equal to $\dim(\mathcal{R}(\underline{A}))$. That is \underline{b} is a linear combination of $\{\underline{a}_i\}.$
- **Theorem** Let $\underline{A} \in \mathbb{R}^{n \times m}$. If $\underline{b} \in \mathcal{R}(\underline{A})$ and $\dim(\mathcal{R}(\underline{A})) = m$, then $\underline{A} \underline{x} = \underline{b}$ possesses a unique solution.

Theorem Let $\underline{A} \in \mathbb{R}^{n \times m}$ and $\underline{b} \in \mathcal{R}(\underline{A})$. If $\text{rank}(\underline{A}) = r < m$, then $\underline{A} \underline{x} = \underline{b}$ has the general solution $\underline{x} = \underline{x}_o + \underline{z}$ where \underline{x}_o is a particular solution of $\underline{A} \underline{x} = \underline{b}$ and z is any solution of the corresponding problem $\underline{A} x = \underline{0}$. *i.e.* $z \in \mathcal{N}(\underline{A})$ where $\dim(\mathcal{N}(\underline{\underline{A}}))=m-r.$