2.4 Algebraic Eigenvalue Problem

Algebraic eigenvalue problem is to find the pair of (\underline{x}, λ) for

$$
\underline{A}\,\underline{x} = \lambda \underline{x}, \quad \underline{x} \neq \underline{0}, \quad \underline{A} \in \Re^{n \times n} \tag{2.1}
$$

It is noted that

- 1. Eigenvalue problem is nonlinear. (Two unknowns λ and x are multiplied.)
- 2. The problem seems to be underspecified (*n* equations and $n+1$ unknowns). We don't expect unique solution of Eq. (2.1) .

From Eq. (2.1)

 $\underline{A}\underline{x} = \lambda \underline{x}$

$$
(\underline{\underline{A}} - \lambda \underline{\underline{I}}) \underline{x} = \underline{0}
$$

EVP defines a homogeneous equation set.

Non-trivial solution \underline{x} only if

$$
\det(\underline{\underline{A}} - \lambda \underline{\underline{I}}) = 0 = \mathcal{P}(\lambda)
$$

where $\mathcal{P}(\lambda)$ is a characteristic polynomial with *n*-th order.

$$
\underline{A} - \lambda \underline{I} = \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix}
$$

There is a term in $\mathcal{P}(\lambda)$

$$
\prod_{i=1}^{n} (a_{ii} - \lambda) \to \lambda^n
$$

and

$$
\det(\underline{\underline{A}} - \lambda \underline{\underline{I}}) = \mathcal{P}_n(\lambda)
$$

From $P_n(\lambda) = 0$, *n* roots of either real of complex conjugate.

• Eigenvectors $\{\underline{x}_i\}$ corresponding to $\{\lambda_i\}$ are determined only to within a multiplicative constant.

$$
\underline{A} \underline{x} = \lambda \underline{x}
$$

$$
\underline{A}(c\underline{x}) = \lambda(c\underline{x})
$$

Def \mathcal{C}^n : Vector space composed of all *n*-dimensional vectors with complex elements

$$
\Re^n\subset\mathcal{C}^n
$$

- I. Eigenvectors of $\underline{\underline{A}}$ are linearly independent.
- II. Adjoint Eigenvalue Problem For $\underline{\underline{A}} \in \Re^{n \times n}$

$$
\underline{A}^T \underline{y} = \eta \underline{y} \quad \underline{y} \neq 0
$$

- $\{\eta_i\}$: adjoint eigenvalues
- ${y}$: adjoint eigenvectors

The two eigenvalue problems

$$
\underline{\underline{A}} \underline{x} = \lambda \underline{x}, \quad \underline{\underline{A}}^T \underline{y} = \eta \underline{y}
$$

have same eigenvalues.

III. Biorthogonality

For eigenvalue problem

$$
\underline{\underline{A}}\,\underline{x}_j = \lambda_j \underline{x}_j
$$

$$
\underline{y}_i^T \underline{A} \underline{x}_j = \lambda_j \underline{y}_i^T \underline{x}_j \tag{2.2}
$$

For adjoint eigenvalue problem

$$
\underline{\underline{A}}^T \underline{y}_i = \lambda_i \underline{y}_i
$$

Transpose gives

$$
\underline{y}_i^T \underline{A} = \lambda_i \underline{y}_i^T
$$

postmultiplying \underline{x}_j on both sides gives

$$
\underline{y}_i^T \underline{A} \underline{x}_j = \lambda_i \underline{y}_i^T \underline{x}_j \tag{2.3}
$$

Subtracting Eq. (2.2) from Eq. (2.3) gives

$$
0 = (\lambda_i - \lambda_j) \underline{y}_i^T \underline{x}_j
$$

If $i \neq j$, then $\lambda_i \neq \lambda_j$, and

$$
\underline{y}_i^T \underline{x}_j = 0 \tag{2.4}
$$

This relation is called **biorthogonality**.

When \underline{A} is symmetric, then $\underline{A} = \underline{A}^T$ and $\{\underline{x}_i\} = \{\underline{y}_i\}$. Then Eq. (2.4) becomes

$$
\underline{x}_i^T \underline{x}_j = 0
$$

This relation is called **orthogonality**.

Theorem Solvability of $\underline{\underline{A}} \underline{x} = \underline{b}$ or **Fredholm's Alternative**

1. If $\underline{\underline{A}} \underline{x} = \underline{0}$ has only the trivial solutions then $\underline{\underline{A}}^{-1}$ exists and $\underline{A}^{-1}\underline{b}$ is unique. dim $[\mathcal{N}(\underline{A})] = 0$.

- 2. If $\underline{A} x = 0$ has non-trivial solutions, so does $\underline{A}^T \underline{y} = \underline{0}$. Assume $\dim[\mathcal{N}(\underline{\underline{A}})] = k < n$, then $\dim[\mathcal{N}(\underline{\underline{A}}^T)] = k$.
- 3. The necessary and sufficient condition for solving $\underline{\underline{A}} \underline{x} = \underline{b}$ is that $\underline{y}_i^T \underline{b} = 0$ for \underline{y}_i satisfying $\underline{A}^T \underline{y}_i = \underline{0}$. This means \underline{b} is orthogonal to all solutions of $\underline{A}^T y = \underline{0}$.

2.5 Norms for Vectors and Matrices

Norm: size of a vector or a size of the difference between two vectors.

Def A norm on \mathbb{R}^n is any real-valued function $\|\cdot\|$ $\mathbb{R}^n \to \mathbb{R}$ such that

1. If $\underline{x} \neq \underline{0}$, $||\underline{x}|| > 0$ 2. $\|\alpha \underline{x}\| = |\alpha| \|\underline{x}\|, \ \alpha \in \Re$ 3. $\|\underline{x} + y\| \le \|\underline{x}\| + \|y\|$

Example :

1. ℓ_1 -norm

$$
\|\underline{x}\|_1 = \sum_{i=1}^n |x_i|
$$

2. ℓ_2 -norm

$$
\|\underline{x}\|_2 = \left[\sum_{i=1}^n x_i^2\right]^{1/2}
$$

$$
= (\underline{x}^T \underline{x})^{1/2}
$$

3. ℓ_{∞} -norm

$$
\|\underline{x}\|_{\infty} = \max\{|x_i|, i = 1,\ldots,n\}
$$

Theorm Schwartz Inequality

For $\underline{x}, \underline{y} \in \mathbb{R}^n$,

$$
|\underline{x}^T \underline{y}| \le ||\underline{x}||_2 ||\underline{y}||_2
$$

Theorem Let $\|\cdot\|_u$ and $\|\cdot\|_v$ be two norms for \Re^n . Then there are positive constants a and b such that

 $a||\underline{x}||_u \leq ||\underline{x}||_v \leq b||\underline{x}||_u$ for all $\underline{x} \in \Re$

Example For $||\underline{x}||_{\infty}$, $||\underline{x}||_1$

$$
\|\underline{x}\|_{\infty} \le \|\underline{x}\|_1 \le n \|\underline{x}\|_{\infty}
$$

Matrix Norm .

Defn For $\|\underline{\underline{A}}\| \in \Re^{m \times n}$, $\|\cdot\| : \Re^{m \times n} \to \Re$ is a matrix norm if

1. (a) $\underline{A} \neq \underline{0}$ implies $||\underline{A}|| > 0$. (b) $\underline{\underline{A}} = \underline{0}$ implies $||\underline{\underline{A}}|| = 0$. 2. $\|\alpha \underline{A}\| = |\alpha| \|\underline{A}\|.$ 3. $\|\underline{A} + \underline{B}\| \le \|\underline{A}\| + \|\underline{B}\|.$ 4. $\|\underline{A}\underline{B}\| \le \|\underline{A}\| \|\underline{B}\|$. (This is only for $n \times n$ matrix)

Example .

1. Frobenius norm

$$
\|\underline{A}\|_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2}\right)^{1/2}
$$

2. Maximum of column sums

$$
\|\underline{A}\|_1 = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|
$$

3. Maximum of rowsums

$$
\|\underline{A}\|_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|
$$

Defn Matrix and vector norms are consistent if they satisfy the inequality

$$
\|\underline{\underline{A}} \, \underline{x}\| \leq \|\underline{\underline{A}}\| \, \| \underline{x}\|
$$

Consistent matrix norm Construction of consistent matrix norm

$$
\|\underline{\underline{A}}\| = \max_{\underline{x} \in \Re^n} \frac{\|\underline{\underline{A}} \underline{x}\|}{\|\underline{x}\|}, \text{ where } \underline{\underline{A}} \in \Re^{m \times n}
$$

For arbitrary \underline{x} ,

$$
\frac{\|\underline{A} \underline{x}\|}{\|\underline{x}\|} \le \|\underline{A}\|
$$