2.8 Nonlinear Equations

General nonlinear equation

$$
R(\underline{x}) = 0
$$

That is

$$
\underline{R} : \underline{x} \in \Re^n \to \underline{0} \in \Re^n
$$

In a scalar notation

$$
R_1(x_1, x_2, \dots, x_n) = 0
$$

\n
$$
R_2(x_1, x_2, \dots, x_n) = 0
$$

\n
$$
\vdots \quad \vdots
$$

\n
$$
R_n(x_1, x_2, \dots, x_n) = 0
$$

Characteristics :

- 1. Cannot be usually solved in a finite number of operations. \rightarrow require iteration
- 2. Require an initial guess. Ability of scheme to converge to solution depends on the guess.
- 3. Only guarantees convergence in a limited number of cases.

Methods :

- 1. Sequential methods: Fixed set of operations leading to a sequence of $\{\underline{x}^{(k)}\}_{k\to\infty}\to \underline{x}^*.$
- 2. Nonsequential method: Involve random selection

Sequential methods :

Each is characterized by an iteration formula

$$
\underline{x}^{(k+1)} = \underline{x}^{(k)} + \lambda^{(k)} \underline{D}^{(k)}
$$

where

 $D^{(k)}$: correction vector $\lambda^{(k)}$: relaxation parameter

- $\bullet\,$ Trade-off: Work involved in finding \underline{D} vs. accuracy of solution
- Fixed point iteration:

Let $\lambda = 1$ and $\underline{D} = \underline{R}$, then

$$
\underline{x}^{(k+1)} = \underline{x}^{(k)} + \underline{R}(\underline{x}^{(k)})
$$

This iteration defines a sequence $\{ \underline{x}^{(k)} \} \rightarrow \underline{x}^*$, where \underline{x}^* is a solution of $\underline{R}(\underline{x}^*)=\underline{0}$ and is a **fixed point**.

Many ways to write a fixed point algorithm. For example, there are several algorithms for

$$
R(x) = x3 - 7x - 6 = 0
$$

1.
$$
\frac{1}{7}x3 - x - \frac{6}{7} = 0
$$

$$
x^{(k+1)} = \frac{x^{(k)^3}}{7} - \frac{6}{7}
$$

2.
$$
\frac{x^3 - 7x - 6}{-x^2} = 0
$$

$$
x^{(k+1)} = \frac{7x^{(k)} + 6}{x^{(k)^2}}
$$

3.
$$
\frac{x^3 - 7x - 6}{-(3x^2 - 7)} = 0
$$

$$
x^{(k+1)} = \frac{2x^{(k)^3} + 6}{3x^{(k)^2} - 7}
$$

This algorithm is Newton's method.

Apply three algorithms above for $R(x) = x^3 - 7x - 6 = 0$ and iterate until $|x^{(k+1)} - x^{(k)}| \leq 10^{-5}$. The exact solution is $x = -1, -2, 3$ from $R(x) = x^3 - 7x - 6 = (x + 1)(x + 2)(x - 3) = 0.$

The different behaviour is explained by Contraction Mapping Theorm.

Contraction Mapping Theorem .

1. Let $\phi(\underline{x})$ be a continuous set of functions that map a closed and bounded region $\mathcal{R} \in \mathbb{R}^n$ into itself. When $\underline{x} = (x_1, x_2, \dots, x_n)^T \in \mathcal{R}$, it follows that

$$
\underline{\phi}(\underline{x}) = \begin{bmatrix} \phi_1(x_1, x_2, \dots, x_n) \\ \phi_2(x_1, x_2, \dots, x_n) \\ \vdots \\ \phi_n(x_1, x_2, \dots, x_n) \end{bmatrix} \in \mathcal{R}
$$

Example : For $\underline{\phi}(\underline{x}) = \underline{x} + \underline{R}(\underline{x})$ trying to solve $\underline{R}(\underline{x}) = 0$, fixed point algorithm is written as

$$
\underline{x}^{(k+1)} = \underline{x}^{(k)} + \underline{R}(\underline{x}^{(k)})
$$

Then, the solution satisfies $\underline{x} = \underline{\phi}(\underline{x})$.

2. Assume that there exists a positive constant $L < 1$, such that

$$
\|\underline{\phi}(\underline{a}) - \underline{\phi}(\underline{b})\| \le L \|\underline{a} - \underline{b}\| \,\forall \underline{a}, \underline{b} \in \mathcal{R}
$$

Then in R there is a unique solution of the equation

$$
\underline{x} = \underline{\phi}(\underline{x})
$$

and the sequence $\{\underline{x}^{(k)}\}$ defined by

$$
\underline{x}^{(k+1)} = \underline{\phi}(\underline{x}^{(k)})
$$

converges to this solution for any initial approxiamtion $\underline{x}^{(0)} \in \mathcal{R}$. Here L is called a Lipschitz constant.

Note that the contraction mapping theorem is a sufficient but not necessary condition for convergence.

2.9 Iterative Solution of Linear Equations

For $\underline{\underline{A}} \underline{x} = \underline{b}$, the residual equation is

$$
\underline{R}(\underline{x}) = \underline{A} \,\underline{x} - \underline{b} = \underline{0}
$$

and

$$
\underline{\phi}(\underline{x}) = \underline{\underline{A}} \,\underline{x} - \underline{b} + \underline{x}
$$

Then,

$$
\begin{aligned}\n\underline{x} &= \underline{\phi}(\underline{x}) \\
&= \underline{A} \underline{x} - \underline{b} + \underline{x} \\
&= (\underline{A} + \underline{L})\underline{x} - \underline{b} \\
&= \underline{M} \underline{x} + \underline{g}\n\end{aligned}
$$

Fixed Point Iteration is

$$
\underline{x}^{(k+1)} = \underline{\phi}(\underline{x}^{(k)})
$$

$$
= \underline{\underline{M}} \underline{x}^{(k)} + \underline{g}
$$

Here <u> \underline{M} </u> plays a role of <u>J</u>. The condition for convergence is $L = ||\underline{M}|| < 1$.

Splitting of $\underline{\underline{A}}$.

For $\underline{\underline{A}} \underline{x} = \underline{b}, \underline{\underline{A}}$ is splitted as

$$
\underline{\underline{A}} = \underline{\underline{B}} - \underline{\underline{C}}
$$

where $\underline{\underline{B}}$ is non-singular. Then,

$$
\underline{\underline{B}}\,\underline{x} - \underline{\underline{C}}\,\underline{x} = \underline{b}
$$

and

$$
\underline{x} = \underbrace{\underline{B}^{-1}\underline{C}}_{\underline{\underline{M}}} \underline{x} + \underbrace{\underline{B}^{-1}\underline{b}}_{\underline{g}}
$$

1. Jacobi Method

$$
\underline{\underline{A}} = \underline{\underline{D}} + \underline{\underline{L}} + \underline{\underline{U}}
$$

$$
\underline{\underline{D}} = \text{diagonal element of } \underline{\underline{A}} \\
= \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \phi \\ & & \ddots & \\ & & & a_{nn} \end{bmatrix}
$$

$$
L_{ij} = \begin{cases} a_{ij} & i > j \\ 0 & i \leq j \end{cases} \quad U_{ij} = \begin{cases} a_{ij} & i < j \\ 0 & i \geq j \end{cases}
$$

$$
\begin{array}{rcl}\n(\underline{D} + \underline{L} + \underline{U})x & = & \underline{b} \\
\frac{\underline{D}x}{\underline{L}} & = & -(\underline{L} + \underline{U})x + \underline{b} \\
x & = & -\underline{D}^{-1}(\underline{L} + \underline{U})x + \underline{D}^{-1}\underline{b}\n\end{array}
$$

$$
x_i^{(k+1)} = \frac{-\sum_{\substack{j=1 \ i \neq i}}^N a_{ij} x_j^{(k)} + b_i}{a_{ii}}, \quad i = 1, 2, \dots, N
$$

2. Gauss-Seidel Method

$$
\begin{aligned}\n(\underline{D} + \underline{L})\underline{x}^{(k+1)} &= -\underline{U}\,\underline{x}^{(k)} = \underline{b} \\
\underline{D}\,\underline{x}^{(k+1)} &= -\underline{L}\,\underline{x}^{(k+1)} - \underline{U}\,\underline{x}^{(k)} + \underline{b} \\
x_i^{(k+1)} &= \frac{-\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + \sum_{j=i+1}^{N} a_{ij} x_j^{(k)} + b_i}{a_{ii}}, \quad i = 1, 2, \dots, N\n\end{aligned}
$$

Sequentially updates as information is available.

When both converges, GS needs fewer iteration than Jacobi.

3. Successive Over-relaxation (SOR)

$$
(\underline{D} + \underline{L} + \underline{U})\underline{x} = \underline{b}
$$

$$
\underline{D}\underline{x} = \underline{D}\underline{x} + \omega(-\underline{D} - \underline{L} - \underline{U})\underline{x} + \omega\underline{b}
$$

$$
(\underline{D} + \omega\underline{L})\underline{x} = (1 - \omega)\underline{D}\underline{x} - \omega\underline{U}\underline{x} + \omega\underline{b}
$$

$$
\begin{aligned}\n\left(\underline{D} + \omega \underline{L}\right) \underline{x}^{(k+1)} &= (1 - \omega) \underline{D} \underline{x}^{(k)} - \omega \underline{U} \underline{x}^{(k)} + \omega \underline{b} \\
\underline{D} \underline{x}^{(k+1)} &= (1 - \omega) \underline{D} \underline{x}^{(k)} - \omega \underline{L} \underline{x}^{(k+1)} - \omega \underline{U} \underline{x}^{(k)} + \omega \underline{b} \\
x_i^{(k+1)} &= (1 - \omega) x_i^{(k)} + \frac{\omega}{a_{ii}} \left(-\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^N a_{ij} x_j^{(k)} + b_i \right)\n\end{aligned}
$$

Rate of convergence :

For 1-D problem

$$
x^{(k+1)} = \phi(x^{(k)}) = x^{(k)} + R(x^{(k)})
$$
\n(2.5)

Let

$$
x^* = \phi(x^*)\tag{2.6}
$$

Subtracting Eq. (2.5) from Eq. (2.6) gives

$$
x^* - x^{(k+1)} = \phi(x^*) - \phi(x^{(k)})
$$

Then,

$$
||x^* - x^{(k+1)}|| = ||\phi(x^*) - \phi(x^{(k)})||
$$

$$
\leq L||x^* - x^{(k)}||
$$

where $L = \max |\phi'(\xi)|$. And,

$$
\epsilon^{(k+1)} \le L\epsilon^{(k)}
$$

shows linear convergence.

Order of convergence :

When

$$
\lim_{k \to \infty} \frac{|\epsilon^{(k+1)}|}{|\epsilon^{(k)}|^{p}} = \text{constant}
$$

p is an order of convergence.

• Linear convergence

$$
\|\epsilon^{(k+1)}\| \le L \|\epsilon^{(k)}\|
$$

where $\epsilon^{(k)} = x^* - x^{(k)}$.

• Higher order convergence

$$
\|\epsilon^{(k+1)}\| \le L \|\epsilon^{(k)}\|^p
$$

Taylor series about the exact solution

$$
x^* = \phi(x^*)
$$

\n
$$
x^{(k+1)} = \phi(x^{(k)})
$$

\n
$$
\cong \phi(x^*) + \phi'(x^*)(x^{(k)} - x^*) + \frac{\phi''(x^*)}{2}(x^{(k)} - x^*)^2 + \cdots
$$
\n(2.8)

Subtracting Eq. (2.7) from Eq. (2.8) gives

$$
x^{(k+1)} - x^* = \phi'(x^*)(x^{(k)} - x^*) + \frac{\phi''(x^*)}{2}(x^{(k)} - x^*)^2 + \cdots
$$

Then,

$$
\lim_{x^{(k)} \to x^*} \frac{x^{(k+1)} - x^*}{x^{(k)} - x^*} = \phi'(x^*) \text{ when } \phi'(x^*) \neq 0
$$

This is linear convergence.

As a special case, when $\phi'(x^*) = 0$,

$$
x^{(k+1)} - x^* = \frac{\phi''(x^*)}{2}(x^{(k)} - x^*)^2 + \cdots
$$

And,

$$
\lim_{x^{(k)} \to x^*} \frac{x^{(k+1)} - x^*}{(x^{(k)} - x^*)^2} = \phi''(x^*)
$$

This corresponds to quadratic convergence.

Newton's method :

In 1-D case, we want to solve $R(x) = 0$. During the iteration

$$
R(x^{(k+1)}) = 0
$$

= $R(x^{(k)}) + R'(x^{(k+1)} - x^{(k)}) + \mathcal{O}[(x^{(k+1)} - x^{(k)})^2]$

Then,

$$
x^{(k+1)} = x^{(k)} - \frac{R(x^{(k)})}{R'(x^{(k)})}
$$

In this case,

$$
\phi(x) = x - \frac{R(x)}{R'(x)}
$$

and

$$
\phi'(x) = \frac{R''R}{(R')^2}
$$

For $x = x^*$, $R(x^*) = 0$ and $\phi'(x^*) = 0$ if $R' \neq 0$.

Thus, Newton's method shows quadratic convergence. In muliple dimension

$$
\underline{R}(\underline{x}^{(k+1)}) = \underline{0}
$$

=
$$
\underline{R}(\underline{x}^{(k)}) + \left[\frac{\partial \underline{R}}{\partial \underline{x}}\right]_{\underline{x}^{(k)}} (\underline{x}^{(k+1)} - \underline{x}^{(k)})
$$

Here,

$$
\left[\frac{\partial \underline{R}}{\partial \underline{x}}\right]_{\underline{x}^{(k)}} = \underline{J}(\underline{x}^{(k)})
$$

called Jacobian matrix. Then,

$$
\underline{x}^{(k+1)} - \underline{x}^{(k)} = \underline{\delta}^{(k+1)} \n= -\underline{J}^{-1}(\underline{x}^{(k)}) \underline{R}(\underline{x}^{(k)})
$$

and \underline{x} is updated by

$$
\underline{x}^{(k+1)} = \underline{x}^{(k)} + \underline{\delta}^{(k+1)}
$$

Simple Newton iteration :

In this method Jacobian matrix is not updated.

Adaptive Newton method :

- Full Newton: Update $\underline{\underline{J}}$ at each iteration
-
• Simple Newton: Never updates $\underline{\underline{J}}$
- $\bullet\,$ Adaptive Newton: Update $\underline{\underline{J}}$ depending on the rate of convergence