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2.8 Nonlinear Equations

General nonlinear equation

R(x) = 0

That is

R : x ∈ �n → 0 ∈ �n

In a scalar notation

R1(x1, x2, . . . , xn) = 0

R2(x1, x2, . . . , xn) = 0
...
...
...

Rn(x1, x2, . . . , xn) = 0

Characteristics :

1. Cannot be usually solved in a finite number of operations.

→ require iteration

2. Require an initial guess. Ability of scheme to converge to solution

depends on the guess.

3. Only guarantees convergence in a limited number of cases.

Methods :

1. Sequential methods: Fixed set of operations leading to a sequence of

{x(k)}k→∞ → x∗.

2. Nonsequential method: Involve random selection

Sequential methods :

Each is characterized by an iteration formula

x(k+1) = x(k) + λ(k)D(k)
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where

D(k) : correction vector

λ(k) : relaxation parameter

• Trade-off: Work involved in finding D vs. accuracy of solution

• Fixed point iteration:
Let λ = 1 and D = R, then

x(k+1) = x(k) +R(x(k))

This iteration defines a sequence {x(k)} → x∗, where x∗ is a solution of

R(x∗) = 0 and is a fixed point.

Many ways to write a fixed point algorithm.

For example, there are several algorithms for

R(x) = x3 − 7x − 6 = 0

1.
1
7
x3 − x − 6

7
= 0

x(k+1) =
x(k)3

7
− 6
7

2.
x3 − 7x − 6

−x2 = 0

x(k+1) =
7x(k) + 6

x(k)2

3.
x3 − 7x − 6
−(3x2 − 7) = 0

x(k+1) =
2x(k)3 + 6
3x(k)2 − 7

This algorithm is Newton’s method.
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Apply three algorithms above for R(x) = x3 − 7x − 6 = 0
and iterate until |x(k+1) − x(k)| ≤ 10−5.

The exact solution is x = −1, −2, 3
from R(x) = x3 − 7x − 6 = (x+ 1)(x+ 2)(x − 3) = 0.

Result of iteration

Initial guess Algorithm

(1) (2) (3)

x(0) = −1.1 n = 12 n = 10 n = 3

x(12) = −1.00000 x(10) = −2.00000 x(3) = −1.00000
x(0) = −2.2 n = 6 n = 9 n = 4

|x(6)| > 106 x(9) = −2.00000 x(4) = −2.00000
The different behaviour is explained by Contraction Mapping Theorm.

Contraction Mapping Theorem .

1. Let φ(x) be a continuous set of functions that map a closed and

bounded region R ∈ �n into itself. When x = (x1, x2, . . . , xn)T ∈ R, it
follows that

φ(x) =




φ1(x1, x2, . . . , xn)

φ2(x1, x2, . . . , xn)
...

φn(x1, x2, . . . , xn)




∈ R

Example : For φ(x) = x+R(x) trying to solve R(x) = 0, fixed point

algorithm is written as

x(k+1) = x(k) +R(x(k))

Then, the solution satisfies x = φ(x).

2. Assume that there exists a positive constant L < 1, such that

‖φ(a)− φ(b)‖ ≤ L‖a − b‖ ∀a, b ∈ R

Then in R there is a unique solution of the equation

x = φ(x)
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and the sequence {x(k)} defined by

x(k+1) = φ(x(k))

converges to this solution for any initial approxiamtion x(0) ∈ R. Here
L is called a Lipschitz constant.

Note that the contraction mapping theorem is a sufficient but not necessary

condition for convergence.
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2.9 Iterative Solution of Linear Equations

For A x = b, the residual equation is

R(x) = A x − b = 0

and

φ(x) = A x − b+ x

Then,

x = φ(x)

= A x − b+ x

= (A+ I)x − b

= M x+ g

Fixed Point Iteration is

x(k+1) = φ(x(k))

= M x(k) + g

Here M plays a role of J . The condition for convergence is L = ‖M‖ < 1.

Splitting of A .

For A x = b, A is splitted as

A = B − C

where B is non-singular. Then,

B x − C x = b

and

x = B−1C︸ ︷︷ ︸
M

x+B−1b︸ ︷︷ ︸
g



Num Meth Chem Engrs, Prof. Do Hyun Kim, KAIST 39

1. Jacobi Method

A = D + L+ U

D = diagonal element of A

=




a11

a22 φ
. . .

φ ann




Lij =


 aij i > j

0 i ≤ j
Uij =


 aij i < j

0 i ≥ j

(D + L+ U)x = b

Dx = −(L+ U)x+ b

x = −D−1(L+ U)x+D−1b

x
(k+1)
i =

− ∑N
j=1
j �= i

aijx
(k)
j + bi

aii

, i = 1, 2, . . . , N

2. Gauss-Seidel Method

(D + L)x(k+1) = −U x(k) = b

D x(k+1) = −L x(k+1) − U x(k) + b

x
(k+1)
i =

− ∑i−1
j=1 aijx

(k+1)
j +− ∑N

j=i+1 aijx
(k)
j + bi

aii

, i = 1, 2, . . . , N

Sequentially updates as information is available.

When both converges, GS needs fewer iteration than Jacobi.
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3. Successive Over-relaxation (SOR)

(D + L+ U)x = b

D x = D x+ ω(−D − L − U)x+ ωb

(D + ωL)x = (1− ω)D x − ωU x+ ωb

(D + ωL)x(k+1) = (1− ω)D x(k) − ωU x(k) + ωb

Dx(k+1) = (1− ω)D x(k) − ωL x(k+1) − ωU x(k) + ωb

x
(k+1)
i = (1− ω)x(k)

i +
ω

aii


−

i−1∑
j=1

aijx
(k+1)
j −

N∑
j=i+1

aijx
(k)
j + bi




Rate of convergence :

For 1-D problem

x(k+1) = φ(x(k)) = x(k) +R(x(k)) (2.5)

Let

x∗ = φ(x∗) (2.6)

Subtracting Eq. (2.5) from Eq. (2.6) gives

x∗ − x(k+1) = φ(x∗)− φ(x(k))

Then,

‖x∗ − x(k+1)‖ = ‖φ(x∗)− φ(x(k))‖
≤ L‖x∗ − x(k)‖

where L = max |φ′(ξ)|. And,

ε(k+1) ≤ Lε(k)

shows linear convergence.
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Order of convergence :

When

lim
k→∞

|ε(k+1)|
|ε(k)|p = constant

p is an order of convergence.

• Linear convergence

‖ε(k+1)‖ ≤ L‖ε(k)‖

where ε(k) = x∗ − x(k).

• Higher order convergence

‖ε(k+1)‖ ≤ L‖ε(k)‖p

Taylor series about the exact solution

x∗ = φ(x∗) (2.7)

x(k+1) = φ(x(k))

∼= φ(x∗) + φ′(x∗)(x(k) − x∗) +
φ′′(x∗)
2

(x(k) − x∗)2 + · · · (2.8)

Subtracting Eq. (2.7) from Eq. (2.8) gives

x(k+1) − x∗ = φ′(x∗)(x(k) − x∗) +
φ′′(x∗)
2

(x(k) − x∗)2 + · · ·

Then,

lim
x(k)→x∗

x(k+1) − x∗

x(k) − x∗ = φ′(x∗) when φ′(x∗) �= 0

This is linear convergence.

As a special case, when φ′(x∗) = 0,

x(k+1) − x∗ =
φ′′(x∗)
2

(x(k) − x∗)2 + · · ·
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And,

lim
x(k)→x∗

x(k+1) − x∗

(x(k) − x∗)2
= φ′′(x∗)

This corresponds to quadratic convergence.

Newton’s method :

In 1-D case, we want to solve R(x) = 0. During the iteration

R(x(k+1)) = 0

= R(x(k)) +R′(x(k+1) − x(k)) +O[(x(k+1) − x(k))2]

Then,

x(k+1) = x(k) − R(x(k))
R′(x(k))

In this case,

φ(x) = x − R(x)
R′(x)

and

φ′(x) =
R′′R
(R′)2

For x = x∗, R(x∗) = 0 and φ′(x∗) = 0 if R′ �= 0.
Thus, Newton’s method shows quadratic convergence.

In muliple dimension

R(x(k+1)) = 0

= R(x(k)) +
[
∂R

∂x

]
x(k)

(x(k+1) − x(k))

Here,

[
∂R

∂x

]
x(k)

= J(x(k))
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called Jacobian matrix. Then,

x(k+1) − x(k) = δ(k+1)

= −J−1(x(k))R(x(k))

and x is updated by

x(k+1) = x(k) + δ(k+1)

Simple Newton iteration :

In this method Jacobian matrix is not updated.

Adaptive Newton method :

• Full Newton: Update J at each iteration

• Simple Newton: Never updates J

• Adaptive Newton: Update J depending on the rate of convergence


