
Introduction to Statistical 
Thermodynamics - 2

고려대학교 화공생명 공학과

강정원



Review of Previous Lecture

 Molecular Partition Function 
 Effective way of calculating average properties 

(macroscopic) of a system with given quantum state. 

 Probability 

 Molecular partition function 

 Molecular partition function indicates number of 
possible state that are thermally available at T.
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Objectives of 2nd Lecture

 Ensemble Average Method

 Thermodynamic properties and the 
Canonical Ensemble

 Link between classical and quantum 
mechanics : Phase Space

 Semi classical partition function 

 Very Simple example of Monte-Carlo 
Simulation



Introduction 

 Statistical Mechanics

Properties of individual molecules

Position
Molecular geometry

Intermolecular forces

Properties of bulk fluid 
(macroscopic properties) 

Pressure
Internal Energy
Heat Capacity

Entropy
Viscosity



What we have learned from 
previous lecture…

 Solution to Schrodinger equation (Eigen-value 
problem)
 Wave function 

 Allowed energy levels  : En

 Using the molecular partition function, we can 
calculate average values of property at given 
QUANTUM STATE. 

 Quantum states are changing so rapidly that the 
observed dynamic properties are actually time 
average over quantum states.
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Fluctuation with time…

time

Although we know most probable distribution of energies of individual 
molecules at given N and E  (previous section – molecular partition 
function) it is almost impossible to get time average for interacting 
molecules 



Thermodynamic Properties

 Entire set of possible quantum states 

 Thermodynamic internal energy
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Difficulties

 Fluctuations are very small

 Fluctuations occur too rapidly

 We have to use alternative, abstract 
approach.

 Ensemble average method



Alternative Procedure

 Proposed by Gibbs

 Ensemble Method

 Ensemble ? : Infinite number of mental 
replica of the system of interest

Large Reservoir (const.T) 

All the ensemble members have the
Same N,V.T

Energies can be exchanged 
but  molecules cannot.

Current N = 20 
but N  infinity 



Two postulates 

 Long time average = Ensemble average at N  infinity 

 In an ensemble , the systems of enembles are distributed 
uniformly (equal probability or frequency) 
  Ergodic Hypothesis 

  Principle of equal a priori probability 

E1 E2 E3 E4 E5

time



Averaging Method

 Probability of observing particular quantum state i 

 Ensemble average of a dynamic property

 Time average and ensemble average
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Calculation of Probability in 
Ensemble

 Several methods are available 

 Method of Undetermined multiplier 

 :

 :



Maximization of Weight 
- Most probable distribution 

 Weight 
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The Boltzmann Distribution

 Task : Find the dominating configuration 
for given N and total energy E.

  Find Max. W which satisfies ; 
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Method of Undetermined 
Multipliers

 Maximum weight , W 
 Recall the method to find min, max of a 

function…

 Method of undetermined multiplier : 
 Constraints should be multiplied by a constant 

and added to the main variation equation. 
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Method of undetermined 
multipliers
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Canonical Partition Function

 Boltzmann Distribution

 Canonical Partition Function

Q
e

e
e

N
nP

i

j

i E

j

E

E
i

i

β

β

β −

−

−

===


 −=
j

E jeQ β



Thermodynamic Properties and 
Canonical Ensemble

Internal Energy
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Thermodynamic Properties and 
Canonical Ensemble

Pressure at i state
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Thermodynamic Properties and 
Canonical Ensemble

Pressure

Equation of State in Statistical Mechanics

Probability
Pressure at 
quantum state i



Thermodynamic Properties and 
Canonical Ensemble
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Thermodynamic Properties and 
Canonical Ensemble

Entropy
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The only function that links heat (path integral) and 
state property is TEMPERATURE. 
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Summary of Thermodynamic 
Properties in Canonical Ensemble
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All thermodynamic properties
Can be obtained from 
“PARTITION FUNCTION”



Classical Statistical Mechanics

 It is not easy to derive all the partition functions using 
quantum mechanics

 Classical mechanics can be used with negligible error 
when energy difference between energy levels (Ei) 
are smaller thank kT. 

 However, vibration and electronic states cannot be 
treated with classical mechanics. (The energy 
spacings are order of kT) 



Phase Space 

 Recall Hamiltonian of Newtonian Mechanics

 Instead of taking replica of systems (ensemble members), use 
abstract ‘phase space’ compose of momentum space and 
position space (6N)

  Average of infinite phase space 
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Phase Space 
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Ensemble Average
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(Γ το Γ+dΓ)

  Γ−
Γ−=ΓΓ
dkTH

dkTHdN )/exp(...
)/exp()(P

Using similar technique used for
Boltzmann distribution



Canonical Partition Function

  Γ−= dkTH )/exp(...T

Phase Integral

  Γ−= dkTHc )/exp(...Q

Canonical Partition Function

 


Γ−

−
=

∞→ dkTH

kTE
i

i

T )/exp(...

)/exp(
limc

Match between Quantum and Classical Mechanics
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For rigorous derivation see Hill, Chap.6



Canonical Partition Function in 
Classical Mechanics

  Γ−= dkT
hN NF )/exp(...
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Example : 
Translational Partition Function for an Ideal Gas
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Semi-Classical Partition Function

The energy of a molecule is distributed in different modes
- Vibration, Rotation (Internal : depends only on T)
- Translation (External : depends on T and V) 

Hamiltonian operator can be separated into two parts 
(internal + center of mass motion) 

Assumption 1
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Semi-Classical Partition Function

 Internal parts are density independent 
and most of the components have the 
same value with ideal gases. 

 For solids and polymeric molecules, this 
assumption is not valid any more.
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Semi-Classical Partition Function

For T > 50K, classical approximation 
can be used for translational part.

Assumption 2
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For non-central forces 
(orientation effect) 



Configuration Integral and 
Molecular Simulation
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Introduction to Monte-Carlo 
Simulation

Monte Carlo Method : Wide range of 
problem solving tool using RANDOM 
NUMBERS 

Monte Carlo ? – coined after casino 

 In principle any method that uses random 
number to solve a problem is a Monte 
Carlo Method 



A Classical Example 

 Calculation of pi

 Trial shots are generated 
between 0 and 1  (x and y)

 Compare x^2 + y ^2 < 1 or 
not

 If true, add to the number of 
successful shot 

 Pi =  4H/N 

 N : Area of Rectangle (1*1) 

 4H : Area of ¼ circle 
(pi*1*1*1/4 ) 


