Molecular Monte Carlo Simulation - 1

고려대학교 화공 생명공학과 강정원

Topics

- Random number generators
- Importance Sampling and Simulating Distribution
- Markov chain
- Markov chain and Monte-Carlo Method
- (Project -1) Description of 2-D Ising Model

MC Method ...

- 1953, Nicolaus Metropolis
- 50th anniversary in 2003 !
- Monte Carlo method refers any method that make use of random number
 - Simulation of natural phenomena
 - Simulation of experimental apparatus
 - Numerical analysis

1. Random Number

- What is random number ? Is 3 ?
 - There is no such thing as single random number
- Random number
 - A set of numbers that have nothing to do with the other numbers in the sequence
- In a uniform distribution of random numbers in the range [0,1], every number has the same chance of turning up.
 - 0.00001 is just as likely as 0.5000

How to generate random numbers ?

- Use some chaotic system (Balls in a barrel Lotto)
- Use a process that is inherently random
 - Radioactive decay
 - Thermal noise
 - Cosmic ray arrival
- Tables of a few million random numbers
- Hooking up a random machine to a computer.

Pseudo Random number generators

- The closest random number generator that can be obtained by computer algorithm.
- Usually a uniform distribution in the range [0,1]
- Most pseudo random number generators have two things in common
 - The use of large prime numbers
 - The use of modulo arithmetic
- Algorithm generates integers between 0 and M

$$X_n = I_n / M$$

An early example (John Von Neumann, 1946)

- To generate 10 digits of integer
 - Start with one of 10 digits integers
 - Square it and take middle 10 digits from answer
 - Example) 5772156649² = 33317<u>7923805949</u>09291
- The sequence is appears to be random, but each number is determined from the previous → not random
- Serious problem : Small numbers (0 or 1) are lumped together, it can get itself to a short loop.
 - Example)
 - $6100^2 = 37210000$
 - $2100^2 = 04410000$
 - $4100^2 = 16810000$
 - $5100^2 = 65610000$

Linear Congruential Method

- Lehmer, 1948
- Most typical compiler-supplied so-called random number generator
- Algorithm : $I_{n+1} = (aI_n + c) \mod(m)$

 $-a,c >=0, m > I_0,a,c$

- Advantage :
 - Very fast
- Problem :
 - Poor choice of the constants can lead to very poor sequence
 - The relationship will repeat when a period no greater than m (around m/4)
 - Ex) C complier RAND_MAX : m = 32767

RANDU Generator

- 1960's IBM
- Algorithm

$$I_{n+1} = (65539 \times I_n) \mod(2^{31})$$

• This generator was later found to have a serious problem

1D and 2D Distribution of RANDU

Random number

3D Distribution from RANDU

The Marsaglia effect

- 1968, Marsaglia
- Randon numbers fall mainly in the planes
- The replacement of the multiplier from 65539 to 69069 improves performance significantly

Warning

• The authors of "Numerical Recipes" have admitted that random number generator, RAN1 and RAN2 in the first edition are "at best mediocre"

→ 평범한, 이류의

• In their second edition, these are replaced by ran0, ran1, ran2, which have much better properties

One way to improve the behavior of random number generator

$$I_n = (a \times I_{n-1} + b \times I_{n-2}) \operatorname{mod}(m)$$

 Has two initial seed and can have a period greater than m

The RANMAR generator

- Available in the CERN Library
 - Requires 103 initial seed
 - Period : about 1043
 - This seems to be the ultimate random number generator

Warning on the use of random number generators

• Compiler optimizer is trying to remove multiple calls to random number generator

You have to change the dummy parameter for each calls

Homework - 1

• Find best random number generator on the web and post on the IP board

2. Importance Sampling and Simulating Distributions

• Nature of the problem ...

Shape of High Dimensional Region

- Two (and Higher) dimensional shape can be complex
- How to construct weighted points in a grid that covers the region R ?

Problem : mean-square distance from the origin

$$< r^{2} >= \frac{\int \int (x^{2} + y^{2}) dx dy}{\int \int dx dy}$$

Integration over simple shape ?

Grid must be fine enough !

Sample Integration

Sample Integration

Integration over simple shape ?

- Statistical mechanics integrals typically have significant contribution from miniscule regions of the integration space.
- Ex) 100 spheres at freezing fraction = 10^{-260}

Importance Sampling – Inversion Technique

- This method is only applicable for relatively simple distribution functions
 - Normalize distribution function, so that it becomes probability distribution function (PDF)
 - Integrate PDF form minimum x to an arbitary x
 - This value represents chosing a value less than x
 - Evaluate this to a uniform random number, and solve for x, resulting x will be distributed according to PDF

Inversion formula

$$\frac{\int_{x_{\min}}^{x} f(x) dx}{\int_{x_{\min}}^{x_{\max}} f(x) dx} = \lambda$$

Examples

- Evaluate x between 0 and 4 according to $f(x) = x^{(-1/2)}$
- Evaluate x between 0 and infinity according to f(x) = exp(-x)

Importance Sampling

 $f(x) = 3x^2$

Return to 1-D integral example ullet

$$I = \int_{0}^{1} 3x^2 dx$$

- A linear form is one possibility •
- How to generate random points ٠ according to the distribution ?

$$f(x) = 3x^{2}$$

$$f(x) = 3x^{2}$$

$$f(x) = 2x$$

$$\pi(x) = 2x$$

$$\pi(x) = 2x$$