Applied Statistical Mechanics Lecture Note - 11

Molecular Monte Carlo Method

고려대학교 화공생명공학과 강정원

FR 52 ह्यद्य **Contents** 고려대학교

- I. Theoretical Basis of Molecular Monte Carlo Method
- II. Implementation of Molecular Monte Carlo Method in NVT Ensemble
- III. Implementation of Molecular Monte Carlo Method in Other Ensembles

I. Theoretical Basis of Molecular Monte Carlo Method

I-2. Averaging Method

Ensemble Average of a property

$$
\langle A \rangle = \frac{1}{Z_N N!} \int dr^N A(r^N, p^N) \exp\left\{-\beta U(r^N)\right\} = \frac{\int dr^N A(r^N, p^N) \exp\left\{-\beta U(r^N)\right\}}{\int dr^N \exp\left\{-\beta U(r^N)\right\}}
$$

 \Box Monte Carlo Simulation calculates excess thermodynamic properties that result in deviation from ideal gas behavior

 Metropolis Monte Carlo Method $\left\{\!\!-\beta\!U(r^N)\right\}$ $\int (r^N) dr^N = \int \int \mathcal{N}(r^N) A(r^N) dr^N = \langle A \rangle_{trials, \mathcal{N}(r^N)}$ $(r^{\scriptscriptstyle N})$ $\exp\left\{-\beta U(r^N)\right\}$ *trials* $\mathcal{N}(r^N)$ $\int_{N}^{N} (r^N) dV^N = \int_{N}^{N} N(r^N) dr^N$ $\frac{1}{Z_N(r^N)}$ $A(r^N)dr^N = \int \sqrt[n]{r^N}$ $A(r^N)dr^N = \sqrt{A(r^N)}$ $\langle A \rangle = \int \frac{\exp\{-\beta U(r^N)\}}{7-(r^N)} A(r^N) dr^N = \int \mathcal{N}(r^N) dr^N = \langle A \rangle_{trials, \mathcal{N}}$ $= \sqrt[N(Y^N)A(Y^N)]$ $=\int \frac{\exp\{-\beta U(r^N)\}}{Z(r^N)} A(r^N) dr^N = \int$

probability of a given configuration *rN*

 RANDU Algorithm \Box 1960's, IBM

 $I_{n+1} = (65539 \times I_n) \mod (2^{31})$

 \Box This generator was found to have serious problem : *"The Marsaglia Effect"*

 Improving the behavior of random number generator **□** Two initial seed can extend the period grater than m

> $I_n = (a \times I_{n-1} + b \times I_{n-2}) \mod(m)$ $= (a \times I_{n-1} + b \times I_{n-2}) \mod m$

II-1. Random Number Generation

■ Using Random number generators

- \Box Check the period
- \Box Serial Test : *(x,y) or (x,y,z)*
- \Box Be careful about dummy argument
	- Use different dummy argument for two different set of random numbers
	- \bullet Compiler's optimizer is trying to remove multiple calls to random number generator

II-1. Random Number Generation

Initializing Configuration (Example : 2D Space)

II-2. Calculating Potential Energy

■ Naïve calculation

Summations are chosen to avoid duplicated evaluation and "self" interaction

$$
U = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} u_2(r_{ij})
$$

$$
U = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]
$$

Pseudo Code

Loop $i = 1, N-1$ Loop $j = i+1, N$ Evaluate r_{ii} Evaulate $\dot{\cup}_{ii}$ Accumulate Energy End j Loop End j Loop

FORTRAN Code

 $DO 10 = 1, N$ DO 20 $J = I + 1$, N $DX = X(I)-X(J)$ $DY = Y(1)-Y(J)$ RIJ2 = DX*DX + DY*DY RIJ6 = RIJ2*RIJ2*RIJ2 RIJ12 = RIJ6*RIJ6 $UTOT = UTOT + 1/RJ12 - 1/RJ6$ 20 CONTINUE 10 CONTINUE

II-3. Periodic Boundary Condition and Minimum Image Convention

Problems

- \Box Simulations are performed typically with a few hundred molecules arranged in a cubic lattice \rightarrow computational limitation
	- Large fraction of the molecules can be expected in a surface rather than in the bulk

 \Box Simulation require summation over almost infinite interactions

 \Box PBC (Periodic Boundary Condition) and MIC (Minimum Image Convention) are used to avoid this problems

II-3. Periodic Boundary Condition and Minimum Image Convention

- Periodic Boundary Condition \Box Infinite replica of the simulation box
	- \Box Molecules on any lattice have mirror image counter parts in all the other boxes
	- \Box Changes in one box are matched exactly in the other box \rightarrow surface effects are eliminated

II-3. Periodic Boundary Condition and Minimum Image Convention

Minimum Image Convention

- \Box Summation over infinite array of periodic image \rightarrow impossible
- \Box For a given molecule, we position the molecule at the center of a box with dimension identical to simulation box
- \Box Assume that the central molecules only interacts with all molecules whose center fall within this region

Nearest images of colored sphere

II. Implementation of MMC in NVT Ensemble FR 52 II-3. Periodic Boundary Condition and Minimum Image Convention 고려대학교 Implementing PBC \Box Decision based : IF statement \Box Function based : rounding, truncation, modulus **Function** Decision $BOXL2 = BOXL/2.0$ IF(RX(I).GT.BOXL2) RX(I)=RX(I)-BOXL $RX(I) = RX(I) - BOXL * AINT(RX(I)/BOXL)$ $IF(RX(I).LT.-BOXL2) RX(I) = RX(I) + BOXL$

II-3. Periodic Boundary Condition and Minimum Image Convention

Implementing PBC and MIC

Pseudo CODE

Loop $i = 1, N - 1$ Loop $i = 1 + 1$, N Evaluate r_{ii} Convert r_{ii} to its periodic image (r_{ii}) if $(r_{ii}^{\prime} <$ cutOffDistance) Evaluate $U(r_{ii})$ Accumulate Energy End ifEnd j Loop End i Loop

FORTRAN CODE

```
do 10 ip= 1, Np-1
   xip = x(ip)
   yip = y(ip)do 20 jp= ip+1, Np
    xx = xio - x(io)dx = dble(xx - rLx*anint(xx/rLx ))
    yy = yip - y(ip)dy = db = (yy - rLy * anint(yy/rLy))ri2 = dx * dx + dy * dyif ( rij2 .lt. dcut2 ) then
       rij6 = 1.d0/(rij2*rij2*rij2)
      ri12 = ri16*ri16ham = ham + rij12 - rij6
       pre = pre + 2.d0*rij12 - rij6
     endif
20 continue10 continue
```
II-3. Periodic Boundary Condition and Minimum Image Convention

Features due to PBC and MIC

- \Box Accumulated energies are calculated for the periodic separation distance
- □ Only molecules within cut-off distance contributed to calculated energy
- \Box Caution : Cut-off distance should be smaller than the size of simulation box \rightarrow if not, violation to MIC
- \Box Calculated potential = truncated potential
- Long range correction

$$
X_{\text{full}} = X_c + X_{\text{Irc}}
$$

$$
E_{\text{Irc}} = 2\pi N \rho \int_{r_c}^{\infty} r^2 u(r) dr
$$

- □ For NVT ensemble No. of particle and density (V) are const.
	- LRC can be added after simulation
- \Box For other ensembles, LRC must be added during the simulation

This condition is not sufficient :more conditions are required to setup transition matrix

II-5. Metropolis Sampling Algorithm

Metropolis Recipe

- \Box with probability π_{mn} a trial state j for the move
- \Box if $\rho_n > \rho_m$ accept n as new state

 \Box Otherwise, accept n as the new state with probability $\rho_n > \rho_m$

• Generate a random number R on $(0,1)$ and accept if $R < \rho_n / \rho_m$

 \Box If not accepting n as new state, take the present state as the next one in Markov chain ($\pi_{mn} \neq 0$)

What is the value of α ?

 N_R : Number of accepted trials

II-6. Implementation

II-7. Averages and Error Estimates

Equilibration period

 \Box The averages are evaluated after "equilibration period"

 \Box The equilibration period must be tested : cycle vs. properties

- Ex) 20 000 run :
	- 1 to 10 000 : equilibration period
	- 10 001 to 20 000 : averages are accumulated

E Error estimation

- □ Error estimation based on different simulation runs (with different initial configurations)
- \Box Error estimation dividing total simulation runs into several blocks
	- \rightarrow common method

II-7. Averages and Error Estimates

■ Average and Error Estimates

$$
\langle A \rangle_{run} = \frac{1}{N - N_{equil} - 1} \sum_{i > N_{equil}} A_i
$$

$$
\langle A \rangle_b = \frac{1}{l} \sum_{i=1}^{N_b} A_i
$$

$$
\sigma = \sqrt{\frac{1}{N_b} \sum_{b=1}^{n_b} (\langle A \rangle_b - \langle A \rangle_{run})^2}
$$

III. Implementation of MMC in other Ensembles

III-1. Introduction

■ Commonly encountered ensemble

