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I-1. Introduction

 Overview of Molecular Monte Carlo Method

I. Theoretical Basis of Molecular Monte Carlo Method

Objective

Calculation of Macroscopic
Properties from Microscopic

Properties (intermolecular
forces…)

Averaging Method

Ensemble Averages

NVT Ensemble
NPT Ensemble
μPT Ensemble

Generation of Random 
Configurations

Use of Random Number
Importance Sampling

Markov Chain
Metropolis Algorithm

Approximations

Periodic Boundary Condition
Minimum Image Convention

Long Range Correction
Neighborhood List



I-2. Averaging Method

 Statistical Mechanics : Theoretical Basis for derivation of 
macroscopic behavior from microscopic properties 

 Configuration : position and momenta  (rN and pN)
 Configurational Variable : A(rN , pN)
 Ensemble average 

 Weighted sum over all possible members of ensemble 
 Using classical mechanics 

I. Theoretical Basis of Molecular Monte Carlo Method
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I-2. Averaging Method

 Separation of Energy 
 Total energy is sum of kinetic and potential parts

 Kinetic parts can be treated separately from potential parts 

I. Theoretical Basis of Molecular Monte Carlo Method

)()(),( NNNN rUpKprE +=

=
i

ii
N mppK 2/)( 2

{ }

{ }

N
N

NN
N

NN

i
ii

N
N

Z

rUdr
N

rUdrmpdp
Nh

Q

11

)(exp
!

11

)(exp)2/exp(
!

1

3

3

2
3

Λ
=

−
Λ

=

−−=



 

β

ββ

ZN



I-2. Averaging Method

 Ensemble Average of a property 

 Monte Carlo Simulation calculates excess thermodynamic 
properties that result in deviation from ideal gas behavior

 Metropolis Monte Carlo Method  

I. Theoretical Basis of Molecular Monte Carlo Method
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I-3. General MMMC Scheme

I. Theoretical Basis of Molecular Monte Carlo Method

Start 

Generate initial configuration

Calculate Energy  (2.2)

Trial Move
Acceptance Criteria (2.5)

Calculate Summation of Properties

Average Properties

End

Loop
Ncycles

Random Number Generator (2.1)

PBC and MIC (2.3)

Importance Sampling 
(Metropolis Algorithm)



II-1. Random Number Generation

 There is nothing like “Random number generator “ 
 “Pseudo Random Number Generator “
 Most of the pseudo random number generator repeats “sequence” 
 It is important to know how long is the sequence 

 Most FORTRAN, C compiler supplies random number 
generator based on Linear Congruental Method
 The relationship will repeat when n greater than 32767

II. Implementation of MMC in NVT Ensemble 
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II-1. Random Number Generation

 RANDU Algorithm 
 1960’s , IBM 

 This generator was found to have serious problem : “The 
Marsaglia Effect”

 Improving the behavior of random number generator
 Two initial seed can extend the period grater than m 

II. Implementation of MMC in NVT Ensemble 
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II-1. Random Number Generation

 Using Random number generators
 Check the period 
 Serial Test :   (x,y) or (x,y,z) 
 Be careful about dummy argument 

• Use different dummy argument for two different set of random 
numbers

• Compiler’s optimizer is trying to remove multiple calls to random 
number generator 

II. Implementation of MMC in NVT Ensemble 

X = RAND(IDUM) + RAND(IDUM)

X = 2.0 * RAND(IDUM)

DO 1 I = 1,100
X = RAND(IDUM)

1  CONTINUE

Not evaluating every steps
Evaluated only once

You have to change
dummy argument 

each calls



II-1. Random Number Generation

 Initializing Configuration  (Example : 2D Space)

II. Implementation of MMC in NVT Ensemble 

bx = rLx/float(nx)
by = rLy/float(ny)
do  60  ip= 1, np

x(ip) = ( 0.5*(1.-float(nx)) +
float(mod( ip-1, nx )) )*bx 
y(ip) = ( 0.5*(1.-float(ny)) +
float((ip-1)/nx) )*by

60 continue X
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bx = rLx/float(nx)
by = rLy/float(ny)
do  60  ip= 1, np

x(ip) = ( 0.5*(1.-float(nx)) +
float(mod( ip-1, nx ))+0.1*r2() )*bx 
y(ip) = ( 0.5*(1.-float(ny)) +
float((ip-1)/nx) +0.1*r2())*by

60 continue
X
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II-2. Calculating Potential Energy

 Potential Energy of N-interacting particles
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Effect of external field

Two-body interaction 

Three-body interaction 

II. Implementation of MMC in NVT Ensemble 



II-2. Calculating Potential Energy

 Typically, effect of external field is zero 
 Two body interaction is the most important term in the 

calculations 
 Truncated after second term 

 For some cases, three body interactions may be important
 Including three body interactions imposes a very large 

increase in computation time 
 Short range and long range interactions

 Short range : Dispersion and Repulsion 
 Long range : Ionic interaction 

• Special methods are required for long range interactions due to 
limited size of simulation box

mNt ∝

II. Implementation of MMC in NVT Ensemble 



II-2. Calculating Potential Energy

 Naïve calculation 
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Summations are chosen to avoid duplicated evaluation and
“self” interaction

Loop i = 1, N-1
Loop j = i+1,N 

Evaluate rij
Evaulate Uij

Accumulate Energy
End j Loop

End j Loop

Pseudo Code

DO 10 I = 1, N
DO 20 J = I+1, N

DX = X(I)-X(J)
DY = Y(I)-Y(J)
RIJ2 = DX*DX + DY*DY 
RIJ6 = RIJ2*RIJ2*RIJ2 
RIJ12 = RIJ6*RIJ6

UTOT = UTOT + 1/RIJ12 – 1/RIJ6
20  CONTINUE
10  CONTINUE

FORTRAN Code
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II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Problems
 Simulations are performed typically with a few hundred molecules 

arranged in a cubic lattice  computational limitation
• Large fraction of the molecules can be expected in a surface rather 

than in the bulk 
 Simulation require summation over almost infinite interactions 
 PBC (Periodic Boundary Condition) and MIC (Minimum Image 

Convention) are used to avoid this problems

II. Implementation of MMC in NVT Ensemble 



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Periodic Boundary Condition
 Infinite replica of the simulation box
Molecules on any lattice have mirror 

image counter parts in all the other 
boxes

 Changes in one box are matched 
exactly in the other box  surface 
effects are eliminated 

II. Implementation of MMC in NVT Ensemble 



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Minimum Image Convention

 Summation over infinite array of 
periodic image  impossible 

 For a given molecule, we position 
the molecule at the center of a 
box with dimension identical to 
simulation box 

 Assume that the central 
molecules only interacts with all 
molecules whose center fall 
within this region 

II. Implementation of MMC in NVT Ensemble 

Nearest images of colored sphere



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Implementing PBC
 Decision based : IF statement
 Function based : rounding , truncation, modulus 

II. Implementation of MMC in NVT Ensemble 

BOXL2 = BOXL/2.0 
IF(RX(I).GT.BOXL2) RX(I)=RX(I)-BOXL
IF(RX(I).LT.-BOXL2) RX(I) = RX(I) + BOXL

RX(I) = RX(I) – BOXL * AINT(RX(I)/BOXL)

Decision Function



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Implementing PBC and MIC

II. Implementation of MMC in NVT Ensemble 

Loop i = 1, N -1
Loop j = I + 1, N 

Evaluate rij
Convert rij to its periodic image (rij’) 
if (rij’ < cutOffDistance) 

Evaluate U(rij)
Accumulate Energy 

End if
End j Loop

End i Loop 

Pseudo CODE 

do  10  ip= 1, Np-1
xip = x(ip)
yip = y(ip)
do  20  jp= ip+1, Np
xx = xip - x(jp)
dx = dble( xx - rLx*anint( xx/rLx ) )
yy = yip - y(jp)
dy = dble( yy - rLy*anint( yy/rLy ) )
rij2 = dx*dx + dy*dy
if  ( rij2 .lt. dcut2 )  then

rij6  = 1.d0/(rij2*rij2*rij2)
rij12 = rij6*rij6
ham = ham +      rij12 - rij6 
pre = pre + 2.d0*rij12 - rij6 

endif
20   continue
10 continue

FORTRAN CODE 



II-3. Periodic Boundary Condition and 
Minimum Image Convention

 Features due to PBC and MIC
 Accumulated energies are calculated for the periodic separation distance
 Only molecules within cut-off distance contributed to calculated energy
 Caution : Cut-off distance should be smaller than the size of simulation box  

if not, violation to MIC 
 Calculated potential = truncated potential

 Long range correction 

 For NVT ensemble No. of particle and density (V) are const. 
• LRC can be added after simulation

 For other ensembles, LRC must be added during the simulation

II. Implementation of MMC in NVT Ensemble 
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II-4. Neighborhood List

 In 1967, Verlet proposed a new algorithm to reduce 
computation time

 Instead of searching for neighboring molecules, the neighbors 
of the molecules are stored and used for the calculation

 Variable d is used to encompass slightly outside the cut-off 
distance

 Update of the list
 update of the list / 10-20 steps
 Largest displacement exceed d value

II. Implementation of MMC in NVT Ensemble 



II-5. Metropolis Sampling Algorithm

 Average of a property 

 There are a lot of choice to make Markov process that 
follows a given PDF 

II. Implementation of MMC in NVT Ensemble 
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II-5. Metropolis Sampling Algorithm

 In 1953, Metropolis showed a transition probability matrix 
exists than ensures that the PDF is obeyed 

 Other choice can also satisfies condition of microscopic 
reversibility (Barker , 1965)

II. Implementation of MMC in NVT Ensemble 
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II-5. Metropolis Sampling Algorithm

 Metropolis Recipe 
 with probability πmn a trial state j for the move
 if ρn > ρm accept n as new state
 Otherwise, accept n as the new state with probability ρn > ρm

• Generate a random number R on (0,1) and accept if R <  ρn /ρm

 If not accepting n as new state, take the present state as the next 
one in Markov chain (πmn ≠ 0) 

 What is the value of α ? 

II. Implementation of MMC in NVT Ensemble 

 acceptingnot  if                         0
 accepting if                   1

=
=

mn

Rmn /N
α
α

  trialsaccepted ofNumber  : RN



II-6. Implementation

Start 

Generate initial configuration

Generate trial displacement 

Calculate the change in energy
ΔE = E trial - Eatom

Apply Metropolis Algorithm 
if ΔE <0 or exp(-βΔE) >= rand() then accept move

else reject move

Update periodically maximum displacement, dMax 

Calculate Properties
Calculate Error Estimates

End

Loop Ncycle

Loop Natoms

rTrial = PBC(r + (2*rand()-1)*dMax)

r=rnew 
E = E+ΔE

nAccept = nAccept

if (acceptRatio > 0.5) 
dMax = 1.05*dMax

else 
dMax = 0.95*dMax

II. Implementation of MMC in NVT Ensemble 



II-6. Implementation

Initialization

Reset block sums

Compute block average

Compute final results

“cycle” or 
“sweep”

“block”
Move each atom 
once (on average) 100’s or 1000’s 

of cycles

Independent 
“measurement”

moves per cycle

cycles per block

Add to block sum

blocks per simulation

New configuration

New configuration

Entire Simulation
Monte Carlo Move

Select type of trial move
each type of move has fixed 
probability of being selected

Perform selected trial 
move

Decide to accept trial 
configuration, or keep 

original

II. Implementation of MMC in NVT Ensemble 



II-7. Averages and Error Estimates

 Equilibration period 
 The averages are evaluated after “equilibration period”
 The equilibration period must be tested : cycle vs. properties

• Ex) 20 000 run :
– 1 to 10 000 : equilibration period
– 10 001 to 20 000 : averages are accumulated 

 Error estimation
 Error estimation based on different simulation runs (with different 

initial configurations)
 Error estimation dividing total simulation runs into several blocks

common method 

II. Implementation of MMC in NVT Ensemble 



II-7. Averages and Error Estimates

 Average and Error Estimates 
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II. Implementation of MMC in NVT Ensemble 



III-1. Introduction 

 MMC in different ensembles 
 A very large number of systems for convenient calculation of time 

average macroscopic properties
 Common macroscopic attributes

• (N, V, E) : Microcanonical ensemble
• (N, V, T) : Canonical ensemble
• (N, P, T) :  NPT ensemble
• (μ, V, T) : Grand canonical ensemble

 Microcanonical ensemble cannot be used in MMC because 
constant-kinetic energy constraint cannot be assumed  

 In thermodynamic limit all ensembles are equivalent and it is also 
possible to transform between ensembles. The choice of ensemble 
is completely a matter of convenience (which property ?) 

III. Implementation of MMC in other Ensembles 

No change in N , Closed system

Change in N , Open  system



III-1. Introduction 

III. Implementation of MMC in other Ensembles 

 Commonly encountered ensemble 

Name All states of: Probability distribution Schematic

Microcanonical
(EVN)

given EVN 1
iπ Ω=

Canonical
(TVN)

all energies 1( ) iE
i QE e βπ −=

Isothermal-isobaric
(TPN)

all energies and
volumes

( )1( , ) i iE PV
i iE V e βπ − +

Δ=

Grand-canonical
(TVμ)

all energies and
molecule numbers

( )1( , ) i iE N
i iE N e β μπ − +

Ξ=



III-1. Introduction 

III. Implementation of MMC in other Ensembles 

 Partition functions and bridge equation

Ensemble Thermodynamic
Potential

Partition Function Bridge Equation

Microcanonical Entropy, S 1Ω = / ln ( , , )S k E V N= Ω

Canonical Helmholtz, A iEQ e β−= ln ( , , )A Q T V Nβ− =

Isothermal-isobaric Gibbs, G ( )i iE PVe β− +Δ = ln ( , , )G T P Nβ− = Δ

Grand-canonical Hill, L = –PV ( )i iE Ne β μ− +Ξ = ln ( , , )PV T Vβ μ= Ξ



III-2. NVT Ensemble 

III. Implementation of MMC in other Ensembles 

 Ensemble average :  Boltzmann distribution as weighting factor

 Weighted average  

 For Other ensembles ?  Tricky technique used : “Pseudo Boltzmann Factor”
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III-3. NPT Ensemble 

III. Implementation of MMC in other Ensembles 

 Thermodynamic properties 

 V can change 
 Particles are confined in fluctuating length L
 Scaled coordinate :

 integration over total volume  integration over unit cube Ω

Lii /rα =
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III-3. NPT Ensemble 

III. Implementation of MMC in other Ensembles 

 Pesude Boltzmann Factor 

 Simple modification of NVT ensemble Use ΔY instead of ΔU
 Volume fluctuation

 NVT ensemble 
• Move 1 molecule at a time
• Calculate energies of remaining N-1 molecules 

 NPT ensemble
• Change in V affects the coordinates of all atoms 
• N*N calculations are required 
• Effective strategy : “Scaling Method”
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III-3. NPT Ensemble 

III. Implementation of MMC in other Ensembles 

 “Scaling method” only applicable to relatively simple 
model potential   Scalable potential 
 if not, N*(N-1) calculations are required for each volume 

fluctuation 
 Trial moves : Displacement and volume fluctuation 

 Displacement on each atoms
 Volume change 

 When V change is attempted, long range correction must 
be re-evaluated 



III-3. μVT Ensemble 

III. Implementation of MMC in other Ensembles 

 Property average
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III-3. μVT Ensemble 

III. Implementation of MMC in other Ensembles 

 The Pseudo Boltzmann Factor 

 Attempted Trial Moves 
 Particle displacement
 Particle insertion
 Particle deletion 
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