Applied Statistical Mechanics Lecture Note - 11

Molecular Monte Carlo Method

고려대학교 화공생명공학과 강정원

Contents 고려대학교

- I. Theoretical Basis of Molecular Monte Carlo Method
- II. Implementation of Molecular Monte Carlo Method in NVT Ensemble
- III. Implementation of Molecular Monte Carlo Method in Other Ensembles

I. Theoretical Basis of Molecular Monte Carlo Method

I-2. Averaging Method

Ensemble Average of a property

$$\langle A \rangle = \frac{1}{Z_N N!} \int dr^N A(r^N, p^N) \exp\left\{-\beta U(r^N)\right\} = \frac{\int dr^N A(r^N, p^N) \exp\left\{-\beta U(r^N)\right\}}{\int dr^N \exp\left\{-\beta U(r^N)\right\}}$$

Monte Carlo Simulation calculates excess thermodynamic properties that result in deviation from ideal gas behavior

• Metropolis Monte Carlo Method $\langle A \rangle = \int \frac{\exp\{-\beta U(r^N)\}}{Z_N(r^N)} A(r^N) dr^N = \int \mathcal{N}(r^N) A(r^N) dr^N = \langle A \rangle_{trials, \mathcal{N}(r^N)}$

probability of a given configuration r^N

II-1. Random Number Generation

RANDU Algorithm
 1960's, IBM

 $I_{n+1} = (65539 \times I_n) \mod(2^{31})$

This generator was found to have serious problem : "The Marsaglia Effect"

Improving the behavior of random number generator
 Two initial seed can extend the period grater than m

 $I_n = (a \times I_{n-1} + b \times I_{n-2}) \operatorname{mod}(m)$

II-1. Random Number Generation

Using Random number generators

- □ Check the period
- **Serial Test** : (x,y) or (x,y,z)
- Be careful about dummy argument
 - Use different dummy argument for two different set of random numbers
 - Compiler's optimizer is trying to remove multiple calls to random number generator

II-1. Random Number Generation

■ Initializing Configuration (Example : 2D Space)

II-2. Calculating Potential Energy

■ Naïve calculation

Summations are chosen to avoid duplicated evaluation and "self" interaction

$$U = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} u_2(r_{ij})$$

$$U = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

Pseudo Code

Loop i = 1, N-1 Loop j = i+1,N Evaluate r_{ij} Evaulate U_{ij} Accumulate Energy End j Loop End j Loop

FORTRAN Code

DO 10 I = 1, N DO 20 J = I+1, N DX = X(I)-X(J) DY = Y(I)-Y(J) RIJ2 = DX*DX + DY*DY RIJ6 = RIJ2*RIJ2*RIJ2 RIJ12 = RIJ6*RIJ6 UTOT = UTOT + 1/RIJ12 - 1/RIJ6 20 CONTINUE 10 CONTINUE

II-3. Periodic Boundary Condition and Minimum Image Convention

Problems

- □ Simulations are performed typically with a few hundred molecules arranged in a cubic lattice → computational limitation
 - Large fraction of the molecules can be expected in a surface rather than in the bulk

Simulation require summation over almost infinite interactions

PBC (Periodic Boundary Condition) and MIC (Minimum Image Convention) are used to avoid this problems

II-3. Periodic Boundary Condition and Minimum Image Convention

- Periodic Boundary Condition
 Infinite replica of the simulation box
 - Molecules on any lattice have mirror image counter parts in all the other
 - boxes
 - Changes in one box are matched exactly in the other box → surface effects are eliminated

II-3. Periodic Boundary Condition and Minimum Image Convention

Minimum Image Convention

- □ Summation over infinite array of periodic image → impossible
- For a given molecule, we position the molecule at the center of a box with dimension identical to simulation box
- Assume that the central molecules only interacts with all molecules whose center fall within this region

Nearest images of colored sphere

II. Implementation of MMC in NVT Ensemble 자유 정의 진입 **II-3. Periodic Boundary Condition and Minimum Image Convention** 고려대학교 Implementing PBC Decision based : IF statement □ Function based : rounding , truncation, modulus Function Decision BOXL2 = BOXL/2.0IF(RX(I).GT.BOXL2) RX(I)=RX(I)-BOXL RX(I) = RX(I) - BOXL * AINT(RX(I)/BOXL)IF(RX(I).LT.-BOXL2) RX(I) = RX(I) + BOXL

II-3. Periodic Boundary Condition and Minimum Image Convention

Implementing PBC and MIC

Pseudo CODE

Loop i = 1, N -1 Loop j = I + 1, N Evaluate r_{ij} Convert r_{ij} to its periodic image (r_{ij}') if $(r_{ij}' < cutOffDistance)$ Evaluate $U(r_{ij})$ Accumulate Energy End if End j Loop End i Loop

FORTRAN CODE

```
do 10 ip= 1, Np-1
   (qi)x = qix
   (qi)y = qiy
   do 20 jp= ip+1, Np
     xx = xip - x(jp)
     dx = dble(xx - rLx + anint(xx/rLx))
     yy = yip - y(ip)
     dy = dble(yy - rLy * anint(yy/rLy))
     rij2 = dx * dx + dy * dy
     if (rij2.lt. dcut2) then
       rij6 = 1.d0/(rij2*rij2*rij2)
       rii12 = rii6 * rii6
       ham = ham +
                         rii12 - rii6
       pre = pre + 2.d0 * rij 12 - rij 6
     endif
20 continue
10 continue
```

II-3. Periodic Boundary Condition and Minimum Image Convention

• Features due to PBC and MIC

- Accumulated energies are calculated for the periodic separation distance
- Only molecules within cut-off distance contributed to calculated energy
- □ Caution : Cut-off distance should be smaller than the size of simulation box \rightarrow if not, violation to MIC
- □ Calculated potential = truncated potential
- Long range correction

$$X_{full} = X_c + X_{lrc}$$
$$E_{lrc} = 2\pi N \rho \int_{r_c}^{\infty} r^2 u(r) dr$$

- □ For NVT ensemble No. of particle and density (V) are const.
 - LRC can be added after simulation
- □ For other ensembles, LRC must be added during the simulation

This condition is not sufficient : more conditions are required to setup transition matrix

II-5. Metropolis Sampling Algorithm

Metropolis Recipe

- \Box with probability π_{mn} a trial state j for the move
- \square if $\rho_n > \rho_m$ accept n as new state

 \Box Otherwise, accept n as the new state with probability $\rho_n > \rho_m$

• Generate a random number *R* on (0,1) and accept if $R < \rho_n / \rho_m$

□ If not accepting n as new state, take the present state as the next one in Markov chain ($\pi_{mn} \neq 0$)

• What is the value of α ?

 $\alpha_{mn} = 1/N_R$ if accepting $\alpha_{mn} = 0$ if not accepting

 N_R : Number of accepted trials

II-6. Implementation

II-7. Averages and Error Estimates

Equilibration period

- The averages are evaluated after "equilibration period"
- □ The equilibration period must be tested : cycle vs. properties
 - Ex) 20 000 run :
 - 1 to 10 000 : equilibration period
 - 10 001 to 20 000 : averages are accumulated

Error estimation

- Error estimation based on different simulation runs (with different initial configurations)
- Error estimation dividing total simulation runs into several blocks
 - \rightarrow common method

II-7. Averages and Error Estimates

Average and Error Estimates

III. Implementation of MMC in other Ensembles

III-1. Introduction

■ Commonly encountered ensemble

Name	All states of:	Probability distribution	Schematic
Microcanonical (EVN)	given EVN	$\pi_i = \frac{1}{\Omega}$	
Canonical (TVN)	all energies	$\pi(E_i) = \frac{1}{Q} e^{-\beta E_i}$	88 80 8
Isothermal-isobaric (TPN)	all energies and volumes	$\pi(E_i, V_i) = \frac{1}{\Delta} e^{-\beta(E_i + PV_i)}$	
Grand-canonical (TVµ)	all energies and molecule numbers	$\pi(E_i, N_i) = \frac{1}{\Xi} e^{-\beta(E_i + \mu N_i)}$	

III-3. µVT Ensemble

Property average

