Applied Statistical Mechanics Lecture Note - 1

Introduction

Jeong Won Kang Department of Chemical Engineering Korea University

Contents of This Lecture

• Applied Statistical Mechanics and Related Subjects for "Molecular Modeling"

If you believe Matrix ...

• There are no experimental data, only simulated data

Molecular Modeling...

- Computational Quantum Chemistry
 - Numerical Solution to Schrodinger equation
 - Computationally intensive for small molecules
 - In principle, yield exact electronic structure and energy as limiting case of increasingly accurate method (HF, MP2, MP4,)
 - DFT (Density Function Theory) is approximate but fast
- Molecular Simulation
 - Monte Carlo Simulation
 - Molecular Dynamic Simulation
 - Both require intermolecular and intramolecular potentials (force field) as input

Molecular Simulations

Theory vs. MM

ଅଟ୍ଟ ହେଇ ଅଞ୍ଚ ହେଇ

고려대학교

Molecular Simulation / Experiment / Theory

- Advances in Hardware and Software : Moore's Law
 - Computing speed doubles every 18 months
 - Order of magnitude every 5 years
 - Add 2-3 orders of magnitude using parallelization
- Experimental Cost
 - Labor intensive, high capital cost
- Theory
 - Labor intensive
 - Do graduate students and lab equipment improve by and order of magnitude every five years ?

Time Scale and Space Scale in Molecular Modeling

Computational Chemistry

- Quantum Scale
 - Solve Schrodinger Equation
 - Electronic structures of atoms and molecules
 - Results are often used in the design of force field providing connection to next scale
- Atomistic or Molecular Scale
 - Molecular dynamics or Monte Carlo Simulation
 - Force fields are required
 - Thermophysical properties and transport properties using statistical mechanics
- Mesoscale
 - Systems composed of too many atoms
 - Polymers , block copolymers, ...

Bridge between molecular modeling and process simulation

- More than 75 % of code in process simulator is physical property estimations, calculation and prediction
- Physical property availability plays important role in process simulator
- Role of Molecular Modeling tools
 - Generation of thermophysical properties data by means of virtual experiments
 - Generation of parameters to be used in semi-empirical model built in process simulators`

Industrial Cases ... Westmore et al. (ITRC Report)

Examples of Molecular Modeling

- Heat of reaction, heat of formation
- Properties for complex molecules
- Properties at nono spacing
- Model parameters estimation
 - Critical constants
 - Parameters for a specific model
- Theory development/validation
 - Self association model for SAFT EOS
- Structure prediction
 - Protein folding problem
- Computer-Aided Molecular Design (CAMD)
 - Group contribution based design
 - QM/MM application
- Phase equilibrium calculation

Simple Properties Estimation using QM / MM

- Heat of reaction / Heat of formation
 - G2 Method (Pople et al. J.Physics, 1989)
 - A high level ab-initio method (from quantum mechanics)
 - Case 1
 - $NH=CHNH_2 + CH_3-N=CH-CH_3 \rightarrow CH_3-N=CH-NH_2 + NH=CH-CH_3$
 - Heat of reaction using Benson Method : 0 kJ/mol
 - Heat of reaction using G2 Method : 1.8 kJ/mol
 - Case 2
 - Heat of formation for THP (1,4,5,6-tetrahydropropyrimidine)
 - DIPPR Project 871 : 13.2 + 0.5 kcal /mol
 - G2 Method : 18.9 + 0.1 kcal /mol
 - » 40 hours on CRAY C-90 computer and 10 GB storage space
 - <u>G2 Method is believed to be more accurate !</u>

Prone to hydrolysis and decomposition

Properties of Complex Molecules

- Properties Prediction for alternative refrigerant (HCFCs)
- Fermeglia et al. FPE, 2003
 - Accurate force field (FF) calculation is most important factor
 - FF is important due to complex nature of molecular associations in H-F bonds

Software : Cerius v. 4.2 from Accelys Inc. Hardware : Silicon Graphics Origin 2000

Properties of Complex Molecules

Table 1 – Predicted vapor pressure P° , saturated liquid volume V_L and volumetric properties ρ for selected Chloro Fluoro Hy drocarbons

				2.1	1	
CFHs	PVT	VLE				
	P range (10 ² kPa)	T range (K)	AAD ρ (%)	P ⁰ range (10 ² kPa)	AAD P ⁰ (%)	AAD V _L (%)
R13	5 - 20	150 - 240	1.79	0.03 - 15.93	3.36	2.35
R14	6 - 20	110 - 200	1.93	0.07 - 15.50	1.71	2.27
R21	3 - 10	220 - 310	1.69	0.03 - 23.96	3.08	3.05
R22	5 - 20	250 - 340	1.59	1.77 - 19.82	4.62	1.16
R23	2 - 10	200 - 290	1.65	0.03 - 20.02	5.98	1.78
R32	12 - 98	253 - 333	3.74	3.47 - 8.64	4.33	2.66
R113	1 - 8	270 - 360	3.09	0.10 - 15.03	3.12	5.24
R114	1 - 8	300 - 390	1.16	0.11 - 8.67	4.43	2.91
R115	1 - 8	210 - 300	2.11	0.20 - 10.88	2.17	2.97
R123	1.013	203 - 393	0.622	0.12 - 21.022	3.30	4.29
R134a	8 - 20	285 - 374	1.79	2.16 - 4.27	5.34	0.722
R142b	1.03 - 3.45	266 - 350	1.90	1.14 - 6.20	2.10	1.01
R143a	5.74 - 8.26	274 - 364	2.66	0.25 - 17.5	2.37	3.76
R152a	1.03 - 3.10	266 - 350	1.01	1.09 - 14.3	1.42	1.61

 $AAD = Absolute Average Deviation = 100 \cdot \frac{1}{N} \sum_{i} \left| \frac{M^{exp} - M^{calc}}{M^{exp}} \right|$

Model Parameter Estimation - Critical Constants

- Critical constants are normally used for parameters of cubic EOS.
- Panagiotopoulos (1987) proposed a new method for the simulation of vapor-liquid equilibrium (Gibbs Ensemble Method)
- Using Gibbs Ensemble Method, Smit and coworkers (Siepman et al., 1993) calculated coexistence diagram for normal paraffins to Nc = 48.

자유 청의

고려대학교

Model Parameter Estimation - Critical Constants

Critical densities of the normal alkanes (p_i) as a function of carbon number (N_i) . The experimental data of Anselme et al are represented by diamonds, the data of Steele by squares and the results from the simulations by filled circles.

- \Box Data of Steele (1993)
- \diamond Data of Ansleme (1990)
- Simulation (Siepman, 1993)

Data of Anselme shows maximum at Nc= 8 while data of Steele does not. Simulation calculations have settled the disagreement

Parameters for a specific model

- Fermeglia et al. (1999, FPE)
 - Parameters for PHSCT (Perturbed Hard Sphere Chain Theory) EOS of several CHFs were estimated molecular modeling approaches.

Software : Cerius v. 4.2 from Accelys Inc. Hardware : Silicon Graphics Origin 2000

Theory Development and Validation

- Alder and Wainright(1957, 1959)
 - MD Simulation of Hard Sphere
 - Foundation of Carnahan-Starling EOS and SAFT EOS ,...
- Chapman and Coworkers (1999, FPE)
 - Validation of inter + intra-molecular hydrogen bonding model comparing with MC calculation

FIG. 6. Compressibility factor vs ϵ_{sit}/kT at η =0.05. Symbols represent simulation results, solid triangles (inter- and intramolecular association), solid squares (no intramolecular association). Curves represent predictions from theory.

Product Design

- Drug and Product Design have been long studied in the field of pharmaceutical industries and chemical industries.
- Dendrimer as an alternative for human blood ingredient (Fermaglia et al. 2002, Bioorganic and Medicianl Chemistry)

Product Design

- Ionic solutions
 - Promising candidate for clean solvent
 - Almost infinite number of candidate ionic solution exist due to the variations in cation-anion pair combinations
 - Property measurement / process design is not a primary issue in this subject.
 - The structure-property relationship is the essential problem for the design of a ionic solution as a specific solvent

An almost infinite range of ionic liquids can be made by varying the ions used.

Property-Structure Relationship using COSMO-therm (K. Marsh, MTMS '03, 2003)

Figure 2a. Comparison of LLE phase diagram for the systems [C6mim][PF6] (1) + butan-1-ol (2) at 1 bar with values calculated from COSMOtherm: \blacksquare , experimental; \Box , COSMOtherm; —, eq 1 fit to COSMOtherm.

Figure 2b. Relationship between the UCST and the number of carbon in Rn: \blacklozenge , experiment; O, 1-butyl estimated from experimental data; Δ , COSMO*therm*.

Obtaining Parameters for Conventional Models using MC Simulation

- Iwai et al., 1999, FPE
- Monte Carlo Simulation using LJ potential and empirical potential parameters
- Group interaction parameters for isomeric aromatic groups were obtained for PSRK model (UNIFAC parameters)

자유 청의

고려대학교

Obtaining Parameters for Conventional Model using QM

- Sum and Sandler (1999, FPE)
 - Interaction energy parameter for WILSON and UNIQUAC models
 - HF (Hartree Fock) method is used to determine interaction energy between molecular pair in cluster.
 - Gaussian 94 program
 - Wilson Equation

- UNIQUAC equation

Obtaining Parameters for Conventional Model using QM

Methanol + Water system at 323.15 K

Obtaining Parameters for Conventional Model using QM

Formic acid + + Water system at 323.15 K

COSMO-RS

- Conductor-like Screening Model for Real Solvents
 - Developed by A. Klamt, Bayer (1995)
 - COSMOlogic GmbH, A. Klamt (1999)
 - 1994, Prof. W. Arlt (TU Berlin) Joined as a collaborator
 - 2001, ROYOKA Systems (Japan) have started long-term strategic collaboration
 - APEN Plus is planning to include COSMO –RS or related product in 2004

Basic idea of COSMO-RS

consider each molecule as a collection of surface segments

remove screening charges on segments

COSMO-therm

Chemical potential calculation using statistical thermodynamics

$$p_{\rm S}(\sigma) = \sum_{i \in S} x^i p^{X_i}(\sigma), \qquad p'_{\rm S}(\sigma) = p_{\rm S}(\sigma) / A_{\rm S} = p_{\rm S}(\sigma) / \sum_{i \in S} x^i A^{X_i},$$

$$\ln\{\gamma_{\rm S}(\sigma)\} = -\ln\left\{\int \mathrm{d}\,\sigma' p'_{\rm S}(\sigma') \gamma_{\rm S}(\sigma') \exp\left(-\frac{a_{\rm eff} e(\sigma, \sigma')}{RT}\right)\right\},$$

$$\mu_{\rm S}(\sigma) = -RT \ln\left\{\int \mathrm{d}\,\sigma' p_{\rm S}(\sigma') \exp\left(\frac{\mu_{\rm S}(\sigma') - a_{\rm eff} e(\sigma, \sigma')}{RT}\right)\right\},$$

$$\mu_{\rm S}^{\rm X} = \mu_{\rm resS}^{\rm X} + \mu_{\rm combS}^{\rm X} = \int p^{\rm X}(\sigma) \mu_{\rm S}(\sigma) \mathrm{d}\,\sigma + \mu_{\rm combS}^{\rm X},$$

$$Guggenheim - Starvermann$$

$$\mu_{\rm combS}^{\rm X} = -RT \left\{\lambda \ln A_{\rm S} + L_{\rm 1}^{\rm SG} + \frac{z}{2} \frac{V^{\rm X}}{V_0} L_{\rm 2}^{\rm SG}\right\}$$

Flow chart of COSMO-therm

Applications

- Vapor-Liquid Phase Diagram
- Activity Coefficients
- Excess Properties
- Isomeric Effects
- Temperature Dependency
- Water Solubility
- Brood-Brain Partitioning
- Intestinal Absorption

VLE applications

Find more results at http://www.cosmologic.de

Purpose of This Lecture

- To be able to use molecular modeling softwares
 - Computational Quantum Chemistry Tools
 - HF, MP2, MP4, ...
 - Computer Simulation Tools
 - MC, MD, ..
- Brief introductory lectures on...
 - Introductory Quantum mechanics
 - Principles of Statistical Mechanics
 - Molecular Simulations
 - Computational Quantum mechanics

Subjects ...

Grading...

- 시험:1회(학기말) 50%
- 발표:1회(학기말) 50%
- 출석 : 학교 기준 만족