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Introduction

 Previous simulation methods : Properties of a single 
isolated phase

 Molecular Simulation Techniques can be extended to 
multiple phases 
 Thermodynamic Phase Coexistence : Two or more phases are 

equally stable 
 Condition of Phase Coexistence 
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Phase Diagrams

 Gibbs Phase Rule
 F = 2 + C – P 

• F : Degree of Freedom
• C : Number of Components
• P : Number of Phases
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Straightforward Simulation 

 Change T or P for given model system and wait for a 
phase transformation occur 
 Major Drawbacks

• Hysterisis : Irreversible phase transformation 
• Large free energy barrier at interface  Depends on the size of the 

interface  Depends on the choice of simulation system 
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Alternative Methods

 Gibbs Ensemble Method (Panagiotopoulos, 1987) 
 Gibbs – Duhem Integration Method (Kofke, 1993) 



Why free energies are important 
in Phase Coexistence ? 

 From 2nd Law of Thermodynamics
 At equilibrium, S is maximum for (N,V,E)  
 (N,V,E)  System :   A is minimum 

A = U – TS  (Helmholtz Free Energy) 
 (N,P,T) System :  G is Minimum 

G = H – TS (Gibbs Free Energy) 

 Equilibrium Condition 
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Free energy cannot be directly 
measured in simulation

 Helmholtz free energy

 Not the form of canonical average over phase space 
 Depends directly on the available volume in the phase space
 Cannot be directly measured in real experiment, too. 

 Derivatives of free energy 
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Kirkwood’s coupling parameter 
method

 Assume U depends on the coupling parameter λ : 

 Partition function for potential energy function 
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Kirkwood’s coupling parameter 
method

 Free energy difference 

 All free energy methods are based on calculation of free 
energy differences 

 Example : 
 Volume of R can be measured as a fraction of total volume 

• Sample the reference system 
• keep an average of the fraction of time occupying the target system
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Chemical Potentials 

 Chemical Potentials
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Chemical Potentials 

 For sufficiently large N, 
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Widom’s Test Particle Insertion 
Method 

 Widom (1963) 
 A “ghost particle” is randomly inserted into the ensemble 

and calculating the energy of its interaction 
 The test particle is a “ghost”, it does not affect the 

properties of real molecule
 In principle , this method can be used in any simulation 

system for the calculation of chemical potential  



Implementation of Widom’s 
Method 

 Carry out conventional NVT or NPT Monte Carlo 
Simulation of N particles 

 At frequent interval during simulation, randomly generate 
a coordinate, sN+1 uniformly over unit cube

 For given sN+1, compute :

 Average  chemical potential 
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Note on Widom’s Method

 Widom’s method can be used as a verification that 
equilibrium has been attained 

 At high density, some difficulties are encountered 
 Difficult to insert a particle at given location 



Gibbs Ensemble Method 

 Proposed by Panagiotopoulos (1987,1988) 
 Simulation method without interface 
 Thermodynamic contact without physical contact 

Two simulation volumes



Gibbs Ensemble Method 

 MC simulation includes moves that couples two 
simulation volumes 

Particle exchange equilibrates 
chemical potential

Volume exchange 
equilibrates pressure

Incidentally, the coupled moves enforce mass and volume balance



Gibbs Ensemble Method 



Gibbs Ensemble Method 

 Acceptance of three moves  Governed by Pseudo 
Boltzman Factor 
 Displacement movement 

 Volume change

Molecular transfer
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Gibbs Ensemble - Algorithm



Gibbs Ensemble – Result 

 Water + Methanol Mixture 

•Strauch and Cummings, Fluid Phase Equilibria, 86 (1993) 147-172;
• Chialvo and Cummings, Molecular Simulation, 11 (1993) 163-175. 



Gibbs Ensemble – Result 

 Panagiotopoulos Group



Gibbs Ensemble Limitation

 Limitation arise from particle-exchange requirements 

?

Dense phase or
Complex molecules

Solid phases



Gibbs-Duhem Integration 

 David Kofke (1993) 
 Basis : Numerical Integration of Cluisus – Clapeyron 

Equation 

dPVVdTSS )()( βαβαβα μμ −−−−=−

VT
H

VV
SS

dT
dP

Δ
Δ=

−
−

=
βα

βα

TVP
H

Td
Pd

//1
ln

Δ
Δ−=

∂ ln p
∂β

 
 
  

 
 

σ

= –
Δh
ΔZ



Gibbs – Duhem Integration 

 GE equation 

 Treat as nonlinear first order ODE
 Use (NPT) simulation to obtain ΔH/Δz Fi
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Predictor-Corrector Algorithm 
Implementation lnp
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 Given initial condition and slope 
(= –Δh/ΔZ), predict new (p,T) pair.

 Evaluate slope at new state 
condition…

 …and use to correct estimate of new 
(p,T) pair



Gibbs Duhem Integration 

 Potentially very efficient algorithm 
 Coexistence curves for solid-liquid systems 
 Coexistence curves for complex molecules 

 Algorithm is not robust 
 No built-in diagnostics 

 Additional free energy calculation may be required to 
check the result


