Applied Statistical Mechanics Lecture Note - 12

Advanced Topics in Molecular Monte Carlo Method

고려대학교 화공생명공학과 강정원

Contents

- I. Free Energy Calculations
- II. Gibbs Ensemble Method
- III. Biased Sampling Method

Introduction

- **Previous simulation methods: Properties of a single** isolated phase
- Molecular Simulation Techniques can be extended to multiple phases
	- **Thermodynamic Phase Coexistence : Two or more phases are** equally stable

Condition of Phase Coexistence

$$
T^{\alpha} = T^{\beta}
$$

\n
$$
p^{\alpha} = p^{\beta}
$$

\n
$$
\mu_i^{\alpha} = \mu_i^{\beta} \qquad i = 1, ..., C
$$

Straightforward Simulation

- ■ Change T or P for given model system and wait for a phase transformation occur
	- \Box Major Drawbacks
		- Hysterisis : Irreversible phase transformation
		- Large free energy barrier at interface \rightarrow Depends on the size of the interface \rightarrow Depends on the choice of simulation system

EG 59 स्रध **Alternative Methods** 고려대학교 Gibbs Ensemble Method (Panagiotopoulos, 1987) \Box Gibbs – Duhem Integration Method (Kofke, 1993) \Box

Why free energies are important in Phase Coexistence ?

 From 2nd Law of Thermodynamics \Box At equilibrium, S is maximum for (N, V, E) \Box (N,V,E) System : A is minimum $A = U - TS$ (Helmholtz Free Energy) \Box (N,P,T) System : G is Minimum *G = H – TS* (*Gibbs Free Energy*) Equilibrium Condition

$$
A^{\alpha} = A^{\beta}
$$

$$
G^{\alpha} = G^{\beta}
$$

Free energy cannot be directly measured in simulation

■ Helmholtz free energy

$$
A = -kT \ln Q(N, V, T) = -kT \left(\frac{\int dp^N dr^N \exp(-\beta H(p^N, r^N))}{\Lambda^{dN} N!} \right)
$$

 \Box Not the form of canonical average over phase space \Box Depends directly on the available volume in the phase space \Box Cannot be directly measured in real experiment, too.

Derivatives of free energy

$$
\left(\frac{\partial A}{\partial V}\right)_{N,T} = -p \qquad \left(\frac{\partial A/T}{\partial 1/T}\right)_{V,T} = -E
$$

Find a reversible path in V,T plane and perform integration

Kirkwood's coupling parameter method

٠ **Assume U** depends on the coupling parameter λ :

 $U(\lambda) = (1 - \lambda)U_I + \lambda U_{II} = U_I + \lambda (U_{II} - U_I)$

■ Partition function for potential energy function

$$
Q(N, V, T, \lambda) = \frac{1}{\Lambda^{3N} N!} \int dr^N \exp(-\beta U(\lambda))
$$

$$
\left(\frac{\partial A(\lambda)}{\partial \lambda}\right)_{N,V,T} = -\frac{1}{\beta} \frac{\partial}{\partial \lambda} \ln Q(N,V,T,\lambda) = -\frac{1}{\beta Q(N,V,T,\lambda)} \frac{\partial Q(N,V,T,\lambda)}{\partial \lambda}
$$

$$
= \frac{\int dr^N \left(\frac{\partial U(\lambda)}{\partial \lambda}\right) \exp(-\beta U(\lambda))}{\int dr^N \exp(-\beta U(\lambda))} = \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} \longrightarrow \text{Ensemble average of with potential function } U(\lambda)
$$

Kirkwood's coupling parameter method

Firm Free energy difference

$$
A(\lambda = 1) - A(\lambda = 0) = \int_{\lambda = 0}^{\lambda = 1} d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle
$$

- All free energy methods are based on calculation of free energy differences
- \blacksquare Example :
	- \Box Volume of R can be measured as a fraction of total volume
		- Sample the reference system
		- keep an average of the fraction of time occupying the target system

$$
\frac{\Omega_R}{\Omega_{\Gamma}} = \langle s(\Gamma) \rangle_{\Gamma} \qquad S_R - S_{\Gamma} = k \ln \left(\Omega_R / \Omega_{\Gamma} \right)
$$

Chemical Potentials

E Chemical Potentials

$$
\mu_a = \left(\frac{\partial G}{\partial N_a}\right)_{T,P,N_{b\neq a}} = \left(\frac{\partial A}{\partial N_a}\right)_{T,V,N_{b\neq a}} = -T\left(\frac{\partial S}{\partial N_a}\right)_{V,E,N_{b\neq a}}
$$

$$
Q(N, V, T) = \frac{V^N}{\Lambda^{dN} N!} \int_0^1 \dots \int_0^1 ds^N \exp(-\beta U(s^N; L))
$$

$$
s^N = r^N / L
$$

$$
A(N, V, T) = -kT \ln Q = -kT \ln \left[\frac{V^N}{\Lambda^{dN} N!} \right] - kT \ln \left\{ \int_0^1 ... \int_0^1 ds^N \exp(-\beta U(s^N; L)) \right\}
$$

= $A_{id}(N, V, T) + A_{ex}(N, V, T)$

Widom's Test Particle Insertion Method

- Widom (1963)
- A "ghost particle" is randomly inserted into the ensemble and calculating the energy of its interaction
- The test particle is a "ghost", it does not affect the properties of real molecule
- In principle , this method can be used in any simulation system for the calculation of chemical potential

Implementation of Widom's Method

- Carry out conventional NVT or NPT Monte Carlo Simulation of N particles
- At frequent interval during simulation, randomly generate a coordinate, s_{N+1} uniformly over unit cube
- For given s_{N+1} , compute :

$$
\mu_{ex} = -kT \ln \langle \exp(-\beta \Delta U) \rangle \longrightarrow \text{NVT ensemble}
$$

$$
\mu_{ex} = -kT \ln \left[\frac{\langle V \exp(-\beta \Delta U) \rangle}{\langle V \rangle} \right] \longrightarrow \text{NPT ensemble}
$$

 \blacksquare Average \rightarrow chemical potential

Note on Widom's Method

- Widom's method can be used as a verification that equilibrium has been attained
- At high density, some difficulties are encountered \Box Difficult to insert a particle at given location

- Proposed by Panagiotopoulos (1987,1988)
- Simulation method without interface
- Thermodynamic contact without physical contact

٠ MC simulation includes moves that couples two simulation volumes

> Particle exchange equilibrates chemical potential

Volume exchange equilibrates pressure

∩

Incidentally, the coupled moves enforce mass and volume balance

Box 1: N_1 , V_1 , T

Box 2: N_2 , V_2 , T

(2) Attempt volume fluctuation

Box 1: N_1 , $V_1 + \Delta V$, T

Box 1: $N_1 + 1$, V_1 , T

Acceptance of three moves \rightarrow Governed by Pseudo Boltzman Factor

Displacement movement

$$
\Delta Y_{disp} = \Delta E_{\alpha} + \Delta E_{\beta}
$$

U Volume change

$$
\Delta Y_{disp} = \Delta E_{\alpha} + \Delta E_{\beta} - N_{\alpha} kT \ln \frac{V_{\alpha} + \Delta V_{\alpha}}{V_{\alpha}} - N_{\beta} kT \ln \frac{V_{\beta} + \Delta V_{\beta}}{V_{\beta}} + P(\Delta V_{\alpha} + \Delta V_{\beta})
$$

Nolecular transfer

$$
\Delta Y_{disp} = \Delta E_{\alpha} + \Delta E_{\beta} - kT \ln \frac{V_{\beta}(N_{\alpha}+1)}{V_{\alpha}N_{\beta}}
$$

Gibbs Ensemble - Algorithm

DO 60 四印 **Gibbs Ensemble – Result** 고려대학교 \blacksquare Water + Methanol Mixture

\circ $\circ \bullet$ \circ O° Ω \circ \circ \circ

•*Strauch and Cummings, Fluid Phase Equilibria, 86 (1993) 147-172;* • *Chialvo and Cummings, Molecular Simulation, 11 (1993) 163-175.*

Gibbs Ensemble – Result

■ Panagiotopoulos Group

Gibbs Ensemble Limitation

■ Limitation arise from particle-exchange requirements

Dense phase or Complex molecules

Solid phases

Gibbs-Duhem Integration

- \Box David Kofke (1993)
- Basis : Numerical Integration of Cluisus Clapeyron Equation

$$
\mu_{\alpha} - \mu_{\beta} = -(S_{\alpha} - S_{\beta})dT - (V_{\alpha} - V_{\beta})dP
$$

$$
\frac{dP}{dT} = \frac{S_{\alpha} - S_{\beta}}{V_{\alpha} - V_{\beta}} = \frac{\Delta H}{T\Delta V}
$$

$$
\frac{d \ln P}{d1/T} = -\frac{\Delta H}{P\Delta V/T} \qquad \longrightarrow \qquad \left(\frac{\partial \ln p}{\partial \beta}\right)_{\sigma} = -\frac{\Delta h}{\Delta Z}
$$

Gibbs – Duhem Integration

GE equation

$$
\left(\frac{\partial \ln p}{\partial \beta}\right)_{\sigma} = -\frac{\Delta h}{\Delta Z}
$$

n Treat as nonlinear first order ODE \Box Use (NPT) simulation to obtain $\Delta H / \Delta z$

Predictor-Corrector Algorithm Implementation

Given initial condition and slope $(=-\Delta h/\Delta Z)$, predict new (p,T) pair.

Evaluate slope at new state condition…

 …and use to correct estimate of new (p,T) pair

Gibbs Duhem Integration

- ٠ Potentially very efficient algorithm
	- □ Coexistence curves for solid-liquid systems
	- \Box Coexistence curves for complex molecules
- Algorithm is not robust
- No built-in diagnostics
- Additional free energy calculation may be required to check the result