Applied Statistical Mechanics Lecture Note - 12

Advanced Topics in Molecular Monte Carlo Method

고려대학교 화공생명공학과 강정원

Contents

- I. Free Energy Calculations
- II. Gibbs Ensemble Method
- III. Biased Sampling Method

Introduction

- Previous simulation methods : Properties of a single isolated phase
- Molecular Simulation Techniques can be extended to multiple phases
 - Thermodynamic Phase Coexistence : Two or more phases are equally stable

Condition of Phase Coexistence

$$T^{\alpha} = T^{\beta}$$

$$p^{\alpha} = p^{\beta}$$

$$\mu_{i}^{\alpha} = \mu_{i}^{\beta} \qquad i = 1,..,C$$

Straightforward Simulation

- Change T or P for given model system and wait for a phase transformation occur
 - □ Major Drawbacks
 - Hysterisis : Irreversible phase transformation
 - Large free energy barrier at interface → Depends on the size of the interface → Depends on the choice of simulation system

Alternative Methods

- Gibbs Ensemble Method (Panagiotopoulos, 1987)
- Gibbs Duhem Integration Method (Kofke, 1993)

Why free energies are important in Phase Coexistence ?

From 2nd Law of Thermodynamics

 At equilibrium, S is maximum for (N,V,E)
 (N,V,E) System : A is minimum
 A = U - TS (Helmholtz Free Energy)
 (N,P,T) System : G is Minimum
 G = H - TS (Gibbs Free Energy)

 Equilibrium Condition

$$A^{\alpha} = A^{\beta}$$
$$G^{\alpha} = G^{\beta}$$

Free energy cannot be directly measured in simulation

Helmholtz free energy

$$A = -kT \ln Q(N, V, T) = -kT \left(\frac{\int dp^N dr^N \exp(-\beta H(p^N, r^N))}{\Lambda^{dN} N!} \right)$$

Not the form of canonical average over phase space
 Depends directly on the available volume in the phase space
 Cannot be directly measured in real experiment, too.

Derivatives of free energy

$$\left(\frac{\partial A}{\partial V}\right)_{N,T} = -p \qquad \left(\frac{\partial A/T}{\partial 1/T}\right)_{V,T} = -E$$

Find a reversible path in V,T plane and perform integration

Kirkwood's coupling parameter method

• Assume *U* depends on the coupling parameter λ :

 $U(\lambda) = (1 - \lambda)U_I + \lambda U_{II} = U_I + \lambda (U_{II} - U_I)$

Partition function for potential energy function

$$Q(N,V,T,\lambda) = \frac{1}{\Lambda^{3N} N!} \int dr^N \exp(-\beta U(\lambda))$$

$$\left(\frac{\partial A(\lambda)}{\partial \lambda}\right)_{N,V,T} = -\frac{1}{\beta} \frac{\partial}{\partial \lambda} \ln Q(N,V,T,\lambda) = -\frac{1}{\beta Q(N,V,T,\lambda)} \frac{\partial Q(N,V,T,\lambda)}{\partial \lambda}$$
$$= \frac{\int dr^{N} \left(\frac{\partial U(\lambda)}{\partial \lambda}\right) \exp(-\beta U(\lambda))}{\int dr^{N} \exp(-\beta U(\lambda))} = \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} \longrightarrow \text{Ensemble average of with potential function U}(\lambda)$$

Kirkwood's coupling parameter method

■ Free energy difference

$$A(\lambda = 1) - A(\lambda = 0) = \int_{\lambda=0}^{\lambda=1} d\lambda \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle$$

- All free energy methods are based on calculation of free energy differences
- Example :
 - □ Volume of R can be measured as a fraction of total volume
 - Sample the reference system
 - keep an average of the fraction of time occupying the target system

$$\frac{\Omega_R}{\Omega_{\Gamma}} = \left\langle s(\Gamma) \right\rangle_{\Gamma} \qquad S_R - S_{\Gamma} = k \ln \left(\Omega_R / \Omega_{\Gamma} \right)$$

Chemical Potentials

Chemical Potentials

$$\mu_{a} = \left(\frac{\partial G}{\partial N_{a}}\right)_{T,P,N_{b\neq a}} = \left(\frac{\partial A}{\partial N_{a}}\right)_{T,V,N_{b\neq a}} = -T\left(\frac{\partial S}{\partial N_{a}}\right)_{V,E,N_{b\neq a}}$$

$$Q(N,V,T) = \frac{V^N}{\Lambda^{dN} N!} \int_0^1 \dots \int_0^1 ds^N \exp(-\beta U(s^N;L))$$
$$s^N = r^N / L$$

$$A(N,V,T) = -kT \ln Q = -kT \ln \left[\frac{V^{N}}{\Lambda^{dN} N!} \right] - kT \ln \left\{ \int_{0}^{1} \dots \int_{0}^{1} ds^{N} \exp(-\beta U(s^{N};L)) \right\}$$

= $A_{id}(N,V,T) + A_{ex}(N,V,T)$

Chemical Potentials 고려대학교 ■ For sufficiently large N, $\mu = -kT \ln(Q_{N+1}/Q_N)$ $\mu = -kT \ln(Q_{N+1}/Q_N) = -kT \ln\left[\frac{V/\Lambda^d}{N+1}\right] - kT \ln\left\{\frac{\int_0^1 \dots \int_0^1 ds^{N+1} \exp(-\beta U(s^{N+1}))}{\int_0^1 \dots \int_0^1 ds^N \exp(-\beta U(s^N))}\right\}$ $=\mu_{id}(\rho)+\mu_{ax}$ $\mu_{ex} = -kT \ln \int ds^{N+1} \langle \exp(-\beta \Delta U) \rangle_{M}$

Widom's Test Particle Insertion Method

- Widom (1963)
- A "ghost particle" is randomly inserted into the ensemble and calculating the energy of its interaction
- The test particle is a "ghost", it does not affect the properties of real molecule
- In principle, this method can be used in any simulation system for the calculation of chemical potential

Implementation of Widom's Method

- Carry out conventional NVT or NPT Monte Carlo Simulation of N particles
- At frequent interval during simulation, randomly generate a coordinate, s_{N+1} uniformly over unit cube
- For given s_{N+1} , compute :

$$\mu_{ex} = -kT \ln \langle \exp(-\beta \Delta U) \rangle \longrightarrow \text{ NVT ensemble}$$

$$\mu_{ex} = -kT \ln \left[\frac{\left\langle V \exp(-\beta \Delta U) \right\rangle}{\left\langle V \right\rangle} \right] \longrightarrow \text{ NPT ensemble}$$

• Average \rightarrow chemical potential

Note on Widom's Method

- Widom's method can be used as a verification that equilibrium has been attained
- At high density, some difficulties are encountered
 Difficult to insert a particle at given location

- Proposed by Panagiotopoulos (1987,1988)
- Simulation method without interface
- Thermodynamic contact without physical contact

MC simulation includes moves that couples two simulation volumes

> Particle exchange equilibrates chemical potential

equilibrates pressure

Incidentally, the coupled moves enforce mass and volume balance

Box 1: N_1 , V_1 , T

Box 2: N₂, V₂, T

(2) Attempt volume fluctuation

Box 1: N₁, V₁ + Δ V, T

Box 1: $N_1 + 1$, V_1 , T

Box 2: N_2 , V_2 - ΔV , T

■ Acceptance of three moves → Governed by Pseudo Boltzman Factor

Displacement movement

$$\Delta Y_{disp} = \Delta E_{\alpha} + \Delta E_{\beta}$$

□ Volume change

$$\Delta Y_{disp} = \Delta E_{\alpha} + \Delta E_{\beta} - N_{\alpha} kT \ln \frac{V_{\alpha} + \Delta V_{\alpha}}{V_{\alpha}} - N_{\beta} kT \ln \frac{V_{\beta} + \Delta V_{\beta}}{V_{\beta}} + P(\Delta V_{\alpha} + \Delta V_{\beta})$$

Molecular transfer

$$\Delta Y_{disp} = \Delta E_{\alpha} + \Delta E_{\beta} - kT \ln \frac{V_{\beta}(N_{\alpha} + 1)}{V_{\alpha}N_{\beta}}$$

Gibbs Ensemble - Algorithm

Part 1	Initialisation:
	Specify the number of cycles (<i>nCycles</i>), number of particles in
	the boxes (<i>nBox1</i> , <i>nBox2</i>), number of volume (<i>nVol</i>), transfer
	attempts (<i>nTrans</i>), and the total number of moves
	(nTotal = nBox1 + nBox2 + nVol + nTrans).
Part 2	Generate Markov chain:
	loop $i \leftarrow 1 \dots nCycles$
	$loop j \leftarrow 1 \dots nTotal$
	if (rand() $\leq nBox 1/nTotal$) //Decide which move to perform
Part 2.1	Displace particle in box 1.
	else if(rand() $\leq (nBox1 + nBox2)/nTotal$)
	Displace particle in box 2.
	else if(rand() $\leq (nBox1 + nBox2 + nVol)/nTotal$)
Part 2.2	Change volume.
	else if $(rand() \le (nBox1 + nBox2 + nVol + 0.5nTrans)/nTotal)$
Part 2.3	Transfer particle from box 1 to box 2.
	else
	Transfer particle from box 2 to box 1.
	end if
	end j loop
	end <i>i</i> loop

Gibbs Ensemble – Result

■ Water + Methanol Mixture

Strauch and Cummings, Fluid Phase Equilibria, 86 (1993) 147-172;
Chialvo and Cummings, Molecular Simulation, 11 (1993) 163-175.

Gibbs Ensemble – Result

Panagiotopoulos Group

Gibbs Ensemble Limitation

■ Limitation arise from particle-exchange requirements

Dense phase or Complex molecules

Solid phases

Gibbs-Duhem Integration

- David Kofke (1993)
- Basis : Numerical Integration of Cluisus Clapeyron Equation

$$\mu_{\alpha} - \mu_{\beta} = -(S_{\alpha} - S_{\beta})dT - (V_{\alpha} - V_{\beta})dP$$
$$\frac{dP}{dT} = \frac{S_{\alpha} - S_{\beta}}{V_{\alpha} - V_{\beta}} = \frac{\Delta H}{T\Delta V}$$

Gibbs – Duhem Integration

$$\left(\frac{\partial \ln p}{\partial \beta}\right)_{\sigma} = -\frac{\Delta h}{\Delta Z}$$

Treat as nonlinear first order ODE
 Use (NPT) simulation to obtain ΔH/Δz

Predictor-Corrector Algorithm Implementation

Given initial condition and slope $(= -\Delta h/\Delta Z)$, predict new (p,T) pair.

Evaluate slope at new state condition...

...and use to correct estimate of new (p,T) pair

Gibbs Duhem Integration

Potentially very efficient algorithm
 Coexistence curves for solid-liquid systems
 Coexistence curves for complex molecules
 Algorithm is not robust

- No built-in diagnostics
- Additional free energy calculation may be required to check the result