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I. Basic MD Simulation 
- MC vs. MD

 MC 
 Probabilistic simulation technique
 Limitations 

• require the knowledge of an equilibrium distribution
• rigorous sampling of large number of possible phase-space 
• gives only configurational properties (not dynamic properties !)

 MD 
 Deterministic simulation technique 
 Fully numerical formalism 

• numerical solution of N-body system 
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I. Basic MD Simulation 
- The Idea 

 Follow the exactly same procedure as real experiments 
 Prepare sample 

• prepare N particles
• solve equation of motions

 Connect sample to measuring instruments (e.g. thermometer, 
viscometer,…)

• after equilibration time, actual measurement begins
Measure the property of interest for a certain time interval 

• average properties 

 Example : measurement of temperature
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I. Basic MD Simulation 
- Equation of Motion

 Classical Newton’s equation of motion 
 Three formulation

• Newtonian
• Lagrangian
• Hamiltonian 

 Hamiltonian preferred for many-body systems
• solution of 2N differential equations 
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Solution methods : Finite Difference Method 
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I. Basic MD Simulation 
- Verlet Algorithm 

 Verlet (1967) : Very simple, efficient and popular 
algorithm 
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feature : update without calculating momentum (p)



I. Basic MD Simulation 
- Leapfrog  Algorithm 

 Hockeny (1970), Potter (1972)
 Half-step leap-frog algorithm 
 Mathematically equivalent to Verlet algorithm 
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2. Properties Calculation in MD
- Energies 

 Potential energy 
 Can be calculated during force calculation 

 Kinetic energy 
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2. Properties Calculation in MD
- Pressures

 In an MD simulation, calculation of pressure using tensor notation is 
not the most efficient method. 

 For homogeneous systems, there is simple way to calculate pressure 
(Irving and Kirkwood, 1950) 
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Kinetic – ideal gas term Configurational – called “Virial”

Calculate when velocity update

Calculate when force update



2. Properties Calculation in MD
- Transport Properties

 Approaches for transport properties 
Method 1 : NEMD (Non-equilibrium Molecular Dynamics)

• Continuous addition and removal of conserved quantities
• Gives high signal-to-noise ratio (good statistics)

Method 2 : Equilibrium molecular dynamics
• Start with anisotropic configuration of mass, momentum and energy 
• Observe natural fluctuations and dissipation of mass, momentum and 

energy 
• Poor signal-to-noise ration (poor statistics)

• All transport properties can be measured at once



2. Properties Calculation in MD
- Transport Properties

 Differential Balance Equation

 Constitutive Equations
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2. Properties Calculation in MD
- Transport Properties

 Purpose : Obtain transport coefficient by molecular simulation 
 Not that the “laws” are only approximation that apply not-too-large 

gradients 
 In principle transfer coefficients depends on c, T and v

 Green-Kubo Relation 
 Relation between transport properties and integral over time-correlation 

function.



2. Properties Calculation in MD
- Transport Properties

 Consider self-diffusion in a pure substance
 Consider how molecules are dissipated when initial configurations are 

given as Dirac delta function 

 Combine mass balance eqn. With Fick’s Law 
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2. Properties Calculation in MD
- Transport Properties
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2. Properties Calculation in MD
- Transport Properties
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Slope here gives D

• Plot of t vs. square of traveled distance gives diffusion coefficient
• In 3D –space, <r2> is mean square displacement (MSD) 



2. Properties Calculation in MD
- Transport Properties

 An alternative formulation using velocity instead of particle position
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2. Properties Calculation in MD
- Transport Properties
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•Autocorrelation function : 
property difference between two adjacent time steps

•Area under the curve gives the value of self-diffusion coefficient



2. Properties Calculation in MD
- Evaluation of time correlation functions
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 Time consuming and require a lot of storage
 Alternative method : FFT (Fast Fourier Transform), Coarse 

Graining method 



2. Properties Calculation in MD
- Transport Properties

 Zero-shear viscosity

 Thermal Conductivity 


∞

><=
0

)()0(1 τσστη xyxyd
VkT


∞

><=
0

2 )()0(1 ττλ qqd
VkTT   








+=

≠i ji
ijii ruvm

dT
dq )(

2
12

  







+=

≠i ji
ijyij

y
i

x
iixy rfxvvm )(

2
1σ



2. Properties Calculation in MD
- Radial Distribution Function
 Time averaged value of number density
 Ensemble averaged number density 
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Just count the number of molecules within a range



3. MD in Other Ensembles 
- Constraints 

 With proper choice of g(r), we can calculate useful thermodynamic 
properties  

 Internal energy

 Pressure

 Chemical Potential
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3. MD in Other Ensembles 
– Constraints 

 Hamiltonian formulation 
 Conservation of kinetic + potential energy 

H = K + U
 (N,V,E) ensemble 
 Cannot be applied to other ensemble 

• constant T, constant P, …
• for example we can keep const T while H is constant
• distribution of K and U

 Two types of constraints 
 Holonomic constraints : may be integrated out of equation of motion
 Nonholonomic  constraints : non-integrable  (involves velocities) 

• Temperature, pressure, stress, … 



3. MD in Other Ensembles 
– Constraints 

 Force momentum temperature to remain constant
 One (bad) approach

 at each time step scale momenta to force K to desired value
• advance positions and momenta
• apply pnew = λp with λ chosen to satisfy
• repeat 

 “equations of motion” are irreversible
• “transition probabilities” cannot satisfy detailed balance

 does not sample any well-defined ensemble 



3. MD in Other Ensembles 
– Constraints 

 “Gauss’ principle of least constraints”
 Gaussian constraints : perturbative force introduced into the 

equation of motion minimizes the deviation to classical trajectories 
of particles from their unperturbed trajectories 

 Consider a function f , a function of particle acceleration

 f=0 : normal Newtonian equation of motion 
 otherwise, constrained non-Newtonian equation of motion
 Gauss’ principle : physical acceleration  f to be minimum
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ζ   Multiplier (Gauss)Lagrangin :ζ



3. MD in Other Ensembles 
– Constraints 

 Constant Temperature constraints 
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3. MD in Other Ensembles 
– Constraints 

 Modified equation of motion 
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ζ one of good approach, but temperature is not specified !



3. MD in Other Ensembles 
– Nose Thermostat 

 Extended Lagrangian Equation of Motion 
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3. MD in Other Ensembles 
– Nose-Hoover Thermostat 

 Equations of motion

 Integration schemes
 predictor-corrector algorithm is straightforward
 Verlet algorithm is feasible, but tricky to implement
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At this step, update of ξ
depends on p; update of p 
depends on ξ


