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Subjects

 Three Basic Types of Motions (single particle)
 Translational Motions
 Vibrational Motions
 Rotational Motions

Atomic Structures
 Electronic Structures of Atoms
 One-electron atom / Many-electron atom 



Free Translational Motion
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Probability Density
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A particle in a box 

m

Consider a particle of mass m is 
confined between two walls
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All the same solution as the free particle
but with different boundary condition



A particle in a box

 Applying boundary condition

 Normalization
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A particle in a box
- Properties of the solutions 

 n : Quantum number (allowable state) 

 Momentum
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A particle in a box
- Properties of the solutions 

 n cannot be zero (n = 1,2,3,…)
 Lowest energy of a particle (zero-point energy)
 If a particle is confined in a finite region (particle’s 

location is not indefinite), momentum cannot be zero 

 If the wave function is to be zero at walls, but 
smooth, continuous and not zero everywhere, the it 
must be curved  possession of kinetic energy
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Wave function and probability density 
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With n→∞, more uniform distribution: 
corresponds to classical prediction

“correspondence principle”



Orthogonality and bracket notation
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Dirac Bracket Notation
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Kronecker delta

Wave functions corresponding to different
energies are orthogonal
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Motion in two dimension
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Separation of Variables

Solution



The wave functions for a particle 
confined to a rectangular surface
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Degeneracy 

 Degenerate :
 Two or more wave functions correspond to the same energy 
 If L1=L2 then 
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Degeneracy
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degeneratenot  are functions  wave the,    if 21 LL ≠
The degeneracy can be traced to the symmetry of the system



Motion in three dimension
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Solution



Tunneling

 If the potential energy of a particle does not rise to 
infinity when it is in the wall of the container and E < V , 
the wave function does not decay to zero 

 The particle might be found outside the container 
(leakage by penetration through forbidden zone) 



Use of tunneling

 STM (Scanning Tunneling Microscopy) 

5 nm

fu

Si(111)-7x7



Vibrational Motion

 Harmonic Motion

 Potential Energy

 Schrödinger equation 
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Solutions
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Wave Functions

Energy Levels
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Energy Levels
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Reason for zero-point energy  the 
particle is confined : position is not 

uncertain, momentum cannot be zero
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Wave functions

Quantum tunneling



The properties of oscillators

 Expectation values

 Mean displacement and mean square displacement

 Mean potential energy and mean kinetic energy

 Virial Theorem
 If the potential energy of a paticle has the form V=axb, then its mean 

potential and kinetic energies are related by
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Rotation in Two Dimensions : 
Particles on a ring

 A Rotational motion can be described by its angular 
momentum J 
 J : vector
 Rate at which a particle circulates
 Direction : the axis of rotation

 A particle of mass m constrained to move in a circular 
path of radius r in xy-plane 
 V = 0 everywhere
 Total Energy = Kinetic Energy
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Rotation in Two Dimension

Wave Functions

Energy Levels
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Wave functions

 States are doubly degenerate except for 
ml = 0

The real parts of wave functions



Rotation in Three dimension

 A particle of mass m free to move anywhere on the 3D surface or a sphere

 Colatitude (여위도) : θ
 Azimuth (방위각) :  φ



Rotation in Three dimension
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Wave functions

(2l + 1) fold degeneracy

Orbital momentum quantum 
number

Magnetic Quantum number 
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Wave functions



Angular Momentum

 The energy of a rotating particle
 Classically,
 Quantum mechanical

 Angular Momentum
Magnitude of angular momentum
 Z-component of angular momentum
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Space Quantization

 The orientation of rotating body 
is quantized : rotating body may 
not take up an arbitrary 
orientation with respect to some 
specified axis 



Space Quantization

 The vector model

 lx, ly, lz do not commute with each other. (lx, ly, lz are complementary 
observables)

 uncertainty principle forbids the simultaneous, exact specification of 
more than one component (unless l=0). 

 -If lz is known, impossible to ascribe values to lx, ly.

lx = h/2πi {-sinφ(∂/∂θ) -cotθ cosφ(∂/∂ϕ)}

ly = h/2πi {cosφ(∂/∂θ) -cotθ sinφ(∂/∂ϕ)}

ly = h/2πi (∂/∂ϕ)

Angular momentum L (lx, ly, lz)



The Vector Model

The vector 
representing the 
state of angular 
momentum lies 
with its tip on any 
point on the mouth 
of the cone.



Experiment of Stern-Gerlach

 Otto Stern and Walther Gerlach (1921)
 Shot a beam of silver atoms through an inhomogeneous magnetic field
 Evidence of space quantization 

The classically 
expected result

The Observed outcoming
using silver atoms



Spin

 Stern and Gerlach 
 observed two bands using silver atoms (2)
 The result conflicts with prediction : (2l+1) orientation (l

must be an integer)
 Angular momentum due to the motion of the electron 

about its own axis : spin
 Spin magnetic number : ms

 ms =s, s-1,…,-s
 Spin angular momentum

 Electron spin
 s = ½ 
 Only two states 
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Fermions and Bosons

 Electrons : s=1/2
 Photons : s=1 

Particles with half-integral spin (s=1/2)
Elementary particles that constitute matters Electrons, nucleus

Fermions

Particles with integral spin (s=0,1,…)
Responsible for the forces that binds fermions Photons 

Bosons



Atomic Structure
and Atomic Spectra



 Electronic Structure of Atoms
 One Electron Atom : hydrogen atom
Many-Electron Atom (polyelectronic atom)

 Spectroscopy 
 Experimental Technique to determine electronic structure of atoms. 
 Spectrum 

• Intensity vs. frequency (ν), wavelength (λ), wave number (ν/c)

Topics



Structure and Spectra of 
Hydrogen Atoms

 Electric discharge is passed through gaseous hydrogen , H2 molecules and H atoms 
emit lights of discrete frequencies



Spectra of hydrogenic atoms

 Balmer, Lyman and Paschen Series  ( J. Rydberg)
 n1 = 1 (Lyman)
 n1 = 2 (Balmer) 
 n1 = 3  (Paschen)
 n2 = n1 + 1, n1 +2 , … 
 RH = 109667  cm -1 (Rydberg constant) 

 Ritz combination principle 
 The wave number of any spectral line is the difference between two terms 
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The wave lengths can be correlated by two integers
 Two different states



Spectra of hydrogenic atoms

 Ritz combination principle
 Transition of one energy level to another level with emission of energy as photon 

 Bohr frequency condition 

21 hcThcThvE −==Δ

원자에서 방출되거나 흡수된 electromagnetic radiation 은

주어진 특정 양자수로 제한된다. 

따라서 원자들은 몇 가지 주어진 상태만을 가질 수 있음을

알 수 있다. 

남은 문제는 양자역학을 이용하여 허용된 에너지 레벨을

구하는 것이다. 



The Structure of Hydrogenic Atoms

 Coulombic potential between an electron and hydrogen atom ( Z : atomic number , 
nucleus charge = Ze)

 Hamiltonian of an electron + a nucleus 
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Separation of Internal motion

 Full Schrödinger equation must be separated into two 
equations
 Atom as a whole through the space
 Motion of electron around the nucleus

 Separation of relative motion of electron from the motion 
of atom as a whole (Justification 13.1)
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The Schrödinger Equation
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Separation of Variable : 
Energy is centrosymmetric
Energy is not affeced by 

angular component  (Y)
(Justification 13.2)

R : Radial Wave Equation
New solution required 

Y : All the same equation as in Chap.12 
(Section 12.7, the particle on a sphere)
Spherical Harmonics



The Radial Solutions
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Hydrogenic Radial Wavefunctions



The Radial Solutions



Atomic Orbital and Their Energies

 Quantum numbers

 n : Principal quantum number  (n=1,2,3,…)
• Determines the energies of the electron 

 an electron with quantum number l has angluar 
momentum

 An electron with quantum number ml has z-component 
of angular momentum
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 Bound / Unbound State
 Bound State : negative energy
 Unbound State :  positive energy  (not quantized)

 Ryberg const. for hydrogen atom 

 Ionization energy 
Mininum energy required to remove an electron 

form the ground state
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The energy levels



Shells and Subshells
 Shell

 n = 1 (K), 2 (L), 3 (M), 4(N) 
 Subshell  ( l=0,…. , n-1) 

 l = 0 (s), 1 (p), 2 (d), 3(f), 4(g), 5 (h), 6 (i)
 Examples 

 n = 1
• l = 0   only 1s (1)

 n = 2
• l = 0, 1   2s (1) , 2p (3)

 n  = 3
• l = 0, 1, 2  3s (1), 3p (3), 3d (5) 

 number of orbitals in nth shell : n2

 n2 –f old degenerate 

ml s are limited to the value -l,..,0, …+l



Ways to depicting probability density

Electron densities 
(Density Shading)

Boundary surface 
(within 90 % of electron probability)



Radial Nodes

 Wave function becomes 
zero ( R(r) = 0 ) 
 For 2s orbital : 

 For 3s orbital :

Zar /2 0=

Zar /90.1 0= Zar /10.7 0=

0

0



Radial Distribution Function

 Wave Function 
 probability of finding an electron in any region 

 Probability Density (1s) 

 Probability at any radius r = P (r ) dr

 Radial Wave Function : R(r )

 Radial Distribution Function :  P(r) 
 dr 을 곱하면 확률이 된다. 
 1s orbital 에 대하여 , 
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Radial Distribution Function

Bohr radius 

Wave function Radial Distribution Function 



p-Orbital

 Nonzero angular momentum
 l > 0  

 p-orbital
 l = 1 

• ml = 0

• ml = + 1

• ml = -1

lr∝ψlr∝ψ

zpψ

ypψ
xpψ



D-orbital

 n = 3
l = 2
ml = +2, +1, 0,1,2 



Spectroscopic transitions and Selection rules

 Transition (change of state)

 All possible transitions are not permissible
 Photon has intrinsic spin angular momentum : s = 1  
 d orbital (l=2) s orbital (l=0) (X)  forbidden 

• Photon cannot carry away enough angular momentum
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Selection rule for hydrogenic atoms

 Selection rule
 Allowed
 Forbidden 

 Grotrian diagram 

1,0 ±=Δ lm1±=Δl



Structures of Many-Electron Atoms

 The Schrödinger equation for many electron-atoms
 Highly complicated 
 All electrons interact with one another
 Even for helium, approximations are required 

Approaches
 Simple approach based on H atom  

• Orbital Approximation 
 Numerical computation technique

• Hartree Fock self consistent field (SCF) orbital



Pauli exclusion principle

Quantum numbers
Principal quantum number : n 
Orbital quantum number : l 
Magnetic quantum number :  ml

Spin quantum number : ms 

 Two electrons in atomic structure can never have all 
four quantum numbers in common 

All four quantum number  “Occupied”



Penetration and Shielding

 Unlike hydrogenic atoms 2s and 2p orbitals are 
not degenerate in many-electron atoms
 electrons in s orbitals generally lie lower energy 

than p orbital 
 electrons in many-electron atoms experiences 

repulsion form all other electrons  shielding

 Effective nuclear charge, shielding constant 
σ−= ZZeff

constant  shielding :     
chargenuclear  effective :  

σ
effZ



Penetration and Shielding

An s electrons has a greater “penetration” 
through inner shell than p electrons 

 Energies of electrons in the same shell 
 s < p < d < f 

 Valence electrons 
 electrons in the outer most shell of an atom in its 

ground state
 largely responsible for chemical bonds



The building-up principle

 The building-up principle (Aufbau principle )
 The order of occupation of electrons
 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 
 There are complicating effects arising from electron-electron 

repulsion (when the orbitals have very similar energies)
 Electrons occupy different orbitals of a given subshell 

before doubly occupying any one of them 
 Example : Carbon 

• 1s2 2s2 2p2  1s2 2s2 2px
12py

1 (O)   1s2 2s2 2px
2 (X)

 Hund’s maximum multiplicity principle 
 An atom in its ground state adopts configuration with the greatest 

number of unpaired electrons

favorable unfavorable



3d and 4s orbital

 Sc atom (Z=21)
 [Ar]3d3

 [Ar]3d24s1

 [Ar]3d14s2 

 3d has lower energy than 
4s orbital 

 3d repulsion is much 
higher than 4s (average 
distance from nucleus is 
smaller in 3d) 



Ionization energy

 Ionization energy
 I1 : The minimum energy required to remove an electron from many-

electron atom in the gas phase 
 I2 : The minimum energy required to remove a second  electron from 

many-electron atom in the gas phase 

Li :2s1

Be :2s2

B : 2s2p1



Self-consistent field orbital

 Potential energy of electrons

 Central difficulty  presence of electron-electron interaction 
 Analytical solution is hopeless
 Numerical techniques are available 

•  Hartree-Fock Self-consistent field (SCF) procedure (HF method)
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Schrödinger equation for Neon Atom
1s22s22p6 ,  2p electrons 
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Sum over orbitals (1s, 2s) 

Kinetic energy of electron

Potential energy (electron – nucleus) 

Columbic operator 
(electron – electron charge density)

Exchange operator 
(Spin correlation effect)



HF Procedure

 There is no hope solving previous eqn. analytically 
Alternative procedure (numerical solution)

Assume 1s, 2s orbital 

Solve 2p

Solve 2s

Solve 1s

Compare E and
wave function

Converged 
Solution



Example 

 Orbitals of Na using SCF calculation



Quiz

What is a degeneracy ?
 Explain four quantum number.
Why transition between two states are not always 

allowed ?
 Explain difficulties of solving Schrödinger 

equations for many-electron atoms.


