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Subjects

 Three Basic Types of Motions (single particle)
 Translational Motions
 Vibrational Motions
 Rotational Motions

Atomic Structures
 Electronic Structures of Atoms
 One-electron atom / Many-electron atom 



Free Translational Motion
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 All values of energies are possible (all values of k)
 Momentum 
 Position  See next page
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Probability Density
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A particle in a box 

m

Consider a particle of mass m is 
confined between two walls
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All the same solution as the free particle
but with different boundary condition



A particle in a box

 Applying boundary condition

 Normalization
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A particle in a box
- Properties of the solutions 

 n : Quantum number (allowable state) 

 Momentum
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A particle in a box
- Properties of the solutions 

 n cannot be zero (n = 1,2,3,…)
 Lowest energy of a particle (zero-point energy)
 If a particle is confined in a finite region (particle’s 

location is not indefinite), momentum cannot be zero 

 If the wave function is to be zero at walls, but 
smooth, continuous and not zero everywhere, the it 
must be curved  possession of kinetic energy

mL
hE

8

2

1 =



Wave function and probability density 
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With n→∞, more uniform distribution: 
corresponds to classical prediction

“correspondence principle”



Orthogonality and bracket notation
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Orthogonality

Dirac Bracket Notation
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Wave functions corresponding to different
energies are orthogonal
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Motion in two dimension
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Separation of Variables

Solution



The wave functions for a particle 
confined to a rectangular surface
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Degeneracy 

 Degenerate :
 Two or more wave functions correspond to the same energy 
 If L1=L2 then 
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Degeneracy
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Motion in three dimension
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Tunneling

 If the potential energy of a particle does not rise to 
infinity when it is in the wall of the container and E < V , 
the wave function does not decay to zero 

 The particle might be found outside the container 
(leakage by penetration through forbidden zone) 



Use of tunneling

 STM (Scanning Tunneling Microscopy) 

5 nm

fu

Si(111)-7x7



Vibrational Motion

 Harmonic Motion

 Potential Energy

 Schrödinger equation 
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Solutions
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Wave Functions

Energy Levels
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Energy Levels
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Wave functions

Quantum tunneling



The properties of oscillators

 Expectation values

 Mean displacement and mean square displacement

 Mean potential energy and mean kinetic energy

 Virial Theorem
 If the potential energy of a paticle has the form V=axb, then its mean 

potential and kinetic energies are related by
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Rotation in Two Dimensions : 
Particles on a ring

 A Rotational motion can be described by its angular 
momentum J 
 J : vector
 Rate at which a particle circulates
 Direction : the axis of rotation

 A particle of mass m constrained to move in a circular 
path of radius r in xy-plane 
 V = 0 everywhere
 Total Energy = Kinetic Energy
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Rotation in Two Dimension

Wave Functions

Energy Levels
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Wave functions

 States are doubly degenerate except for 
ml = 0

The real parts of wave functions



Rotation in Three dimension

 A particle of mass m free to move anywhere on the 3D surface or a sphere

 Colatitude (여위도) : θ
 Azimuth (방위각) :  φ



Rotation in Three dimension
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Wave functions

(2l + 1) fold degeneracy

Orbital momentum quantum 
number

Magnetic Quantum number 
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Location of angular nodes
Wave functions



Angular Momentum

 The energy of a rotating particle
 Classically,
 Quantum mechanical

 Angular Momentum
Magnitude of angular momentum
 Z-component of angular momentum
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Space Quantization

 The orientation of rotating body 
is quantized : rotating body may 
not take up an arbitrary 
orientation with respect to some 
specified axis 



Space Quantization

 The vector model

 lx, ly, lz do not commute with each other. (lx, ly, lz are complementary 
observables)

 uncertainty principle forbids the simultaneous, exact specification of 
more than one component (unless l=0). 

 -If lz is known, impossible to ascribe values to lx, ly.

lx = h/2πi {-sinφ(∂/∂θ) -cotθ cosφ(∂/∂ϕ)}

ly = h/2πi {cosφ(∂/∂θ) -cotθ sinφ(∂/∂ϕ)}

ly = h/2πi (∂/∂ϕ)

Angular momentum L (lx, ly, lz)



The Vector Model

The vector 
representing the 
state of angular 
momentum lies 
with its tip on any 
point on the mouth 
of the cone.



Experiment of Stern-Gerlach

 Otto Stern and Walther Gerlach (1921)
 Shot a beam of silver atoms through an inhomogeneous magnetic field
 Evidence of space quantization 

The classically 
expected result

The Observed outcoming
using silver atoms



Spin

 Stern and Gerlach 
 observed two bands using silver atoms (2)
 The result conflicts with prediction : (2l+1) orientation (l

must be an integer)
 Angular momentum due to the motion of the electron 

about its own axis : spin
 Spin magnetic number : ms

 ms =s, s-1,…,-s
 Spin angular momentum

 Electron spin
 s = ½ 
 Only two states 
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Fermions and Bosons

 Electrons : s=1/2
 Photons : s=1 

Particles with half-integral spin (s=1/2)
Elementary particles that constitute matters Electrons, nucleus

Fermions

Particles with integral spin (s=0,1,…)
Responsible for the forces that binds fermions Photons 

Bosons



Atomic Structure
and Atomic Spectra



 Electronic Structure of Atoms
 One Electron Atom : hydrogen atom
Many-Electron Atom (polyelectronic atom)

 Spectroscopy 
 Experimental Technique to determine electronic structure of atoms. 
 Spectrum 

• Intensity vs. frequency (ν), wavelength (λ), wave number (ν/c)

Topics



Structure and Spectra of 
Hydrogen Atoms

 Electric discharge is passed through gaseous hydrogen , H2 molecules and H atoms 
emit lights of discrete frequencies



Spectra of hydrogenic atoms

 Balmer, Lyman and Paschen Series  ( J. Rydberg)
 n1 = 1 (Lyman)
 n1 = 2 (Balmer) 
 n1 = 3  (Paschen)
 n2 = n1 + 1, n1 +2 , … 
 RH = 109667  cm -1 (Rydberg constant) 

 Ritz combination principle 
 The wave number of any spectral line is the difference between two terms 
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The wave lengths can be correlated by two integers
 Two different states



Spectra of hydrogenic atoms

 Ritz combination principle
 Transition of one energy level to another level with emission of energy as photon 

 Bohr frequency condition 

21 hcThcThvE −==Δ

원자에서 방출되거나 흡수된 electromagnetic radiation 은

주어진 특정 양자수로 제한된다. 

따라서 원자들은 몇 가지 주어진 상태만을 가질 수 있음을

알 수 있다. 

남은 문제는 양자역학을 이용하여 허용된 에너지 레벨을

구하는 것이다. 



The Structure of Hydrogenic Atoms

 Coulombic potential between an electron and hydrogen atom ( Z : atomic number , 
nucleus charge = Ze)

 Hamiltonian of an electron + a nucleus 
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Separation of Internal motion

 Full Schrödinger equation must be separated into two 
equations
 Atom as a whole through the space
 Motion of electron around the nucleus

 Separation of relative motion of electron from the motion 
of atom as a whole (Justification 13.1)
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The Schrödinger Equation
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Separation of Variable : 
Energy is centrosymmetric
Energy is not affeced by 

angular component  (Y)
(Justification 13.2)

R : Radial Wave Equation
New solution required 

Y : All the same equation as in Chap.12 
(Section 12.7, the particle on a sphere)
Spherical Harmonics



The Radial Solutions
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Hydrogenic Radial Wavefunctions



The Radial Solutions



Atomic Orbital and Their Energies

 Quantum numbers

 n : Principal quantum number  (n=1,2,3,…)
• Determines the energies of the electron 

 an electron with quantum number l has angluar 
momentum

 An electron with quantum number ml has z-component 
of angular momentum

lmln ,,
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 Bound / Unbound State
 Bound State : negative energy
 Unbound State :  positive energy  (not quantized)

 Ryberg const. for hydrogen atom 

 Ionization energy 
Mininum energy required to remove an electron 

form the ground state
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Shells and Subshells
 Shell

 n = 1 (K), 2 (L), 3 (M), 4(N) 
 Subshell  ( l=0,…. , n-1) 

 l = 0 (s), 1 (p), 2 (d), 3(f), 4(g), 5 (h), 6 (i)
 Examples 

 n = 1
• l = 0   only 1s (1)

 n = 2
• l = 0, 1   2s (1) , 2p (3)

 n  = 3
• l = 0, 1, 2  3s (1), 3p (3), 3d (5) 

 number of orbitals in nth shell : n2

 n2 –f old degenerate 

ml s are limited to the value -l,..,0, …+l



Ways to depicting probability density

Electron densities 
(Density Shading)

Boundary surface 
(within 90 % of electron probability)



Radial Nodes

 Wave function becomes 
zero ( R(r) = 0 ) 
 For 2s orbital : 

 For 3s orbital :

Zar /2 0=

Zar /90.1 0= Zar /10.7 0=

0

0



Radial Distribution Function

 Wave Function 
 probability of finding an electron in any region 

 Probability Density (1s) 

 Probability at any radius r = P (r ) dr

 Radial Wave Function : R(r )

 Radial Distribution Function :  P(r) 
 dr 을 곱하면 확률이 된다. 
 1s orbital 에 대하여 , 
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Radial Distribution Function

Bohr radius 

Wave function Radial Distribution Function 



p-Orbital

 Nonzero angular momentum
 l > 0  

 p-orbital
 l = 1 

• ml = 0

• ml = + 1

• ml = -1

lr∝ψlr∝ψ

zpψ

ypψ
xpψ



D-orbital

 n = 3
l = 2
ml = +2, +1, 0,1,2 



Spectroscopic transitions and Selection rules

 Transition (change of state)

 All possible transitions are not permissible
 Photon has intrinsic spin angular momentum : s = 1  
 d orbital (l=2) s orbital (l=0) (X)  forbidden 

• Photon cannot carry away enough angular momentum
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Selection rule for hydrogenic atoms

 Selection rule
 Allowed
 Forbidden 

 Grotrian diagram 

1,0 ±=Δ lm1±=Δl



Structures of Many-Electron Atoms

 The Schrödinger equation for many electron-atoms
 Highly complicated 
 All electrons interact with one another
 Even for helium, approximations are required 

Approaches
 Simple approach based on H atom  

• Orbital Approximation 
 Numerical computation technique

• Hartree Fock self consistent field (SCF) orbital



Pauli exclusion principle

Quantum numbers
Principal quantum number : n 
Orbital quantum number : l 
Magnetic quantum number :  ml

Spin quantum number : ms 

 Two electrons in atomic structure can never have all 
four quantum numbers in common 

All four quantum number  “Occupied”



Penetration and Shielding

 Unlike hydrogenic atoms 2s and 2p orbitals are 
not degenerate in many-electron atoms
 electrons in s orbitals generally lie lower energy 

than p orbital 
 electrons in many-electron atoms experiences 

repulsion form all other electrons  shielding

 Effective nuclear charge, shielding constant 
σ−= ZZeff

constant  shielding :     
chargenuclear  effective :  

σ
effZ



Penetration and Shielding

An s electrons has a greater “penetration” 
through inner shell than p electrons 

 Energies of electrons in the same shell 
 s < p < d < f 

 Valence electrons 
 electrons in the outer most shell of an atom in its 

ground state
 largely responsible for chemical bonds



The building-up principle

 The building-up principle (Aufbau principle )
 The order of occupation of electrons
 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 
 There are complicating effects arising from electron-electron 

repulsion (when the orbitals have very similar energies)
 Electrons occupy different orbitals of a given subshell 

before doubly occupying any one of them 
 Example : Carbon 

• 1s2 2s2 2p2  1s2 2s2 2px
12py

1 (O)   1s2 2s2 2px
2 (X)

 Hund’s maximum multiplicity principle 
 An atom in its ground state adopts configuration with the greatest 

number of unpaired electrons

favorable unfavorable



3d and 4s orbital

 Sc atom (Z=21)
 [Ar]3d3

 [Ar]3d24s1

 [Ar]3d14s2 

 3d has lower energy than 
4s orbital 

 3d repulsion is much 
higher than 4s (average 
distance from nucleus is 
smaller in 3d) 



Ionization energy

 Ionization energy
 I1 : The minimum energy required to remove an electron from many-

electron atom in the gas phase 
 I2 : The minimum energy required to remove a second  electron from 

many-electron atom in the gas phase 

Li :2s1

Be :2s2

B : 2s2p1



Self-consistent field orbital

 Potential energy of electrons

 Central difficulty  presence of electron-electron interaction 
 Analytical solution is hopeless
 Numerical techniques are available 

•  Hartree-Fock Self-consistent field (SCF) procedure (HF method)
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Schrödinger equation for Neon Atom
1s22s22p6 ,  2p electrons 
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Sum over orbitals (1s, 2s) 

Kinetic energy of electron

Potential energy (electron – nucleus) 

Columbic operator 
(electron – electron charge density)

Exchange operator 
(Spin correlation effect)



HF Procedure

 There is no hope solving previous eqn. analytically 
Alternative procedure (numerical solution)

Assume 1s, 2s orbital 

Solve 2p

Solve 2s

Solve 1s

Compare E and
wave function

Converged 
Solution



Example 

 Orbitals of Na using SCF calculation



Quiz

What is a degeneracy ?
 Explain four quantum number.
Why transition between two states are not always 

allowed ?
 Explain difficulties of solving Schrödinger 

equations for many-electron atoms.


