Applied Statistical Mechanics Lecture Note - 9

Basic Statistics and Monte-Carlo Method -1

고려대학교 화공생명공학과 강정원

Table of Contents

- 1. Basic Statistics
- 2. Generating Non-uniform Random Numbers
- 3. Monte-Carlo Method

1. Basic Statistics

Probability and Statistics Needed to understand for general simulation techniques Acquaintance with notation and symbols Probability and Statistics in Simulation Methods Generation of random samples from a distribution Design of simulation experiments Statistical analysis of simulation data Validation of simulation model

The Probability theory says;

Experiment – An outcome cannot be predicated with certainty

□ Sample Space (*S*) – All Possible outcome of an experiment

- Probability Mass Function P(x)The Probability that a random variable *X* takes on the value *x* $P(x) = P(X = x) \qquad -\infty < x < \infty$ Properties i) $P(x) \ge 0$ for all *x* ii) $\sum_{x}^{\infty} P(x) = 1$
- Cumulative Distribution Function and Probability Mass Function for the outcome of tossing a die

x	1	2	3	4	5	6
P(x)	1/6	1/6	1/6	1/6	1/6	1/6
F(x)	1/6	2/6	3/6	4/6	5/6	1

Expected Value : E(X)the mean average value $E(X) = \sum xp(x) = \mu$

$$Z(X) = \sum_{x} xp(x)$$

Example) The outcome of tossing a die

$$E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5$$

■ Variance

Expected squared value of deviation of *X* from the mean value

□ The measure of how values are distributed from the mean value

 $V(x) = E((X - \mu)^2)$

■ Standard deviation

Square root of the variance

$$\sigma = \sqrt{V(x)}$$

• Properties

 $E(c) = \sum cp(x) = c \sum p(x) = c$ c:constant

$$E(cg(X)) = \sum cg(x)p(x) = c\sum g(x)p(x) = cE(g(X))$$

c: constant g(X): a function of X

$$E(g_1(X) + g_2(X) + ...) = \sum_{x} (g_1(x) + g_2(x) + ...) p(x) =$$
$$\sum_{x} (g_1(x)p(x) + g_2(x)p(x) + ...) = E(g_1(X)) + E(g_2(X)) + ...$$

 $V(X) = E((X - \mu)^{2}) = E(X^{2} - 2\mu X + \mu^{2}) = E(X^{2}) - 2\mu E(X) + \mu^{2} = E(X^{2}) - \mu^{2}$

 $V(X + c) = E((X + c)^{2}) - (E(X + c))^{2}$ $E(X + c) = \mu + c$ $E((X + c)^{2}) = E(X^{2}) + 2\mu c + c^{2}$ $V(X + c) = E(X^{2}) + 2\mu c + c^{2} - (\mu + c)^{2} = E(X^{2}) - \mu^{2}$ V(X + c) = V(X)

A rigid shift in distribution does not change the breadth of the distribution

 $V(cX) = E((cX)^{2}) - (E(cX))^{2}$ $= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}V(X)$

1.2 Continuous Random Variables and Their Properties

Cumulative Distribution Function of a Continuous Random Variable X

$$F(x) = P(X \ge x) \qquad \text{for} -\infty < x < \infty$$
$$F(-\infty) = 0$$
$$F(\infty) = 1$$

Probability Density Function

$$f(x) = \frac{dF(x)}{dx}$$
$$dF = f(t)dt$$
$$\int_{-\infty}^{x} dF = \int_{-\infty}^{x} f(t)dt$$
$$F(x) - F(-\infty) = F(x) = \int_{-\infty}^{x} f(t)dt$$

1.2 Continuous Random Variables and Their Properties

Properties of probability distribution function f(x)

• F(x) is non-decreasing function
$$\rightarrow f(x) = \frac{dF}{dx} \ge 0$$

$$F(\infty) = 1 \qquad \rightarrow \qquad \int_{-\infty}^{\infty} f(x) dx = 1$$

■ Calculation of probability

$$P(a \le x \le b) = P(x \le b) - P(x \le a) = F(b) - F(a)$$
$$= \int_{-\infty}^{b} f(x) dx - \int_{-\infty}^{a} f(x) dx = \int_{a}^{b} f(x) dx$$

1.2 Continuous Random Variables and Their Properties

The expected value $E(X) = \int_{-\infty}^{\infty} x f(x) dx = \mu$ Properties $E(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) dx$ E(c) = cE(cg(X)) = cE(g(X)) $E(g_1(X) + g_2(X) + ...) = E(g_1(X)) + E(g_2(X)) + ...$ $V(X) = E(X^2) - \mu^2$

All the same relations as a discrete random variable X

1.2 Continuous Random Variables and Their Properties

Uniform Probability Distribution Functions

Consider a random variable X, values are distributed uniformly in the interval [*a*,*b*]

■ The probabilities are the same in [*a*,*b*]

$$P(x_1 \le X \le x_1 + \Delta x) = P(x_2 \le X \le x_2 + \Delta x)$$

$$\int_{x_1}^{x_1 + \Delta x} f(x) dx = \int_{x_2}^{x_2 + \Delta x} f(x) dx$$

f(x)

Requirement for normalization $\int_{a}^{b} f(x) dx = c \int_{a}^{b} dx = c(b-a) = 1$ $\int f(x) = \frac{dF(x)}{dx} = \begin{cases} 0 & x \le a \\ 1/(b-a) & a < x < b \\ 0 & x \ge b \end{cases}$

1.2 Continuous Random Variables and Their Properties

Uniform Probability Distribution Functions

Cumulative Probability Distribution Function

$$F(x) = \frac{x}{b-a} + c \qquad F(x) = 0 \text{ at } x = a \rightarrow c = -\frac{a}{b-a}$$

$$F(x) = \begin{cases} 0 & x \le a \\ (x-a)/(b-a) & a < x < b \\ 0 & x \ge b \end{cases}$$

Expected Value

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{1}{b-a} \left(\frac{x^{2}}{2}\right)_{a}^{b} = \frac{a+b}{2}$$

Variance

$$E(X^{2}) = \int_{a}^{b} \frac{x^{2}}{b-a} dx = \frac{a^{2} + ab + b^{2}}{3} \qquad V(X) = E(X^{2}) - (E(X))^{2} = \frac{(b-a)^{2}}{12}$$

1.2 Continuous Random Variables and Their Properties

Mapping to Different Domain

Mapping

□ Pseudo random number generator (*u*) in $[0,1] \rightarrow x$ in [a,b]

Parameters : μ and σ

□ Normalization

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{t^2}{2}\right] dt = 1$$
$$t = \frac{(x-\mu)}{\sigma}$$

Normal probability distribution function

- □ Bell-shaped curve with a single peak at $x = \mu$
- \Box The value at the peak : $1/\sqrt{2\pi\sigma}$
- □ The value of *x* when the value becomes the half of the peak value

$$x = \mu + h$$

$$\exp\left[-\frac{h^2}{2\sigma^2}\right] = \frac{1}{2}$$

$$h = \pm\sqrt{2\ln 2\sigma} \approx \pm 1.177\sigma$$

$$E(X) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} x \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} (t+\mu) \exp\left[-\frac{t^2}{2\sigma^2}\right] dt$$
$$= \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} t \exp\left[-\frac{t^2}{2\sigma^2}\right] dt + \frac{\mu}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} \exp\left[-\frac{t^2}{2\sigma^2}\right] dt$$
$$= 0 + \mu = \mu$$

$$V(X) = E((X - \mu)^2) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} (x - \mu)^2 \exp\left[-\frac{(x - \mu)^2}{2\sigma^2}\right] dx$$

= $\frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} t^2 \exp\left[-t^2\right] dt$
= σ^2
$$t = \frac{x - \mu}{\sqrt{2\sigma}}$$

• The Probability for finding X having value between x_1 and x_2

$$P(x_{1} \leq X \leq x_{2}) = \frac{1}{\sqrt{2\pi\sigma}} \int_{x_{1}}^{x_{2}} \exp\left[-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right] dx = \frac{1}{\sqrt{\pi}} \int_{t_{1}}^{t_{2}} \exp\left[-t^{2}\right] dt$$
$$= \frac{1}{\sqrt{\pi}} \left\{ \int_{0}^{t_{2}} -\int_{0}^{t_{1}} \right\} \exp(-t^{2}) dt$$
$$= \frac{1}{2} \left[\Phi(t_{2}) - \Phi(t_{1}) \right]$$
$$\Phi(t) = \frac{1}{\sqrt{\pi}} \int_{0}^{t} \exp(-x^{2}) dx \quad \leftarrow \quad \text{Error Function}$$

The rule of $3\sigma s$

■ 99.7 % of the trial values fall within the range of $(\mu - 3\sigma)$ and $(\mu + 3\sigma)$

$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) = \frac{1}{2} \left[\Phi(\frac{3}{\sqrt{2}}) - \Phi(-\frac{3}{\sqrt{2}}) \right] = \Phi(\frac{3}{\sqrt{2}}) \approx 0.9973$$

The most probable error

■ If there is equal chance that outcome will falls outside or inside of shaded region
 → most probable error

$$P(\mu - r \le X \le \mu + r) = \frac{1}{2}$$

$$\frac{1}{2} \left[\Phi(\frac{r}{\sqrt{2}\sigma}) - \Phi(-\frac{r}{\sqrt{2}\sigma}) \right] = \Phi(\frac{r}{\sqrt{2}\sigma}) = \frac{1}{2}$$

$$r = \sqrt{2}\Phi^{-1}(\frac{1}{2})\sigma \approx 0.6745\sigma$$

1.4 Sampling Distributions

Suppose we are interested in functions of N random variables $X_1, X_2, X_3, ..., X_N$

 $\Box X_1 \dots X_N$ are independent

 $\Box X_1 \dots X_N$ share the same distribution

Population sample mean

$$\overline{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

The goodness of fit depends on the behavior of random variable

$$\overline{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$$

1.4 Sampling Distributions

\blacksquare X_n are independent, normally distributed variable

 $\Box \quad \text{With common mean} \qquad E(X_n) = \mu$

 \Box With common variance $V(X_n) = \sigma^2$

■ It can be shown that,

 \overline{X} is normally distributed variable

 $E(\overline{X}) = E(\frac{1}{N}\sum_{n=1}^{N}X_{n}) = \frac{1}{N}\sum_{n=1}^{N}E(X_{n}) = \frac{1}{N}\sum_{n=1}^{N}\mu = \mu$ $V(\overline{X}) = V(\frac{1}{N}\sum_{n=1}^{N}X_{n}) = \frac{1}{N^{2}}\sum_{n=1}^{N}V(X_{n}) = \frac{1}{N^{2}}\sum_{n=1}^{N}\sigma^{2} = \frac{\sigma}{N}$

therefore, \overline{X} has a mean $\overline{\mu} = \mu$ and variance $\overline{\sigma}^2 = \sigma/N$

1.5 Central Limit Theorem

Let;

- $\Box X_1 \dots X_N$ are independent
- $\Box X_1 \dots X_N$ share the same distribution
- \square Each $X_1 \dots X_N$ are not normally distributed
- \Box Mean = μ , variance = σ^2
- In nature, the behavior of variable often depends on the accumulated effect on large number of small random factors → behavior is approximately <u>normal.</u>
- Central Limit Theorem
 - $\Box \ \overline{X}$: Normal distribution
 - $\Box \quad \text{Mean value} \quad E(\overline{X}) = \mu$
 - \Box Variance $V(\overline{X}) = \sigma^2 / N$

1.6 Central Limit Theorem and Monte Carlo Method

- In Monte Carlo Simulation, we compute a quantity of interest by random sampling population
- The central limit theorem can be applied
- Sampling scheme in MC simulation require reduction of the value $\sigma \rightarrow$ "Variance Reduction Technique"

2. Generating Non-uniform Random Numbers

Topics

- Methods for generating random numbers those obey non-uniform probability distributions
 - Discrete random variables
 - The inverse function method
 - The superposition method
 - The rejection method

2.1 Modeling a discrete random variables

x	x_{I}	x_2	 x _n
р	p_1	p_2	 p_n

$$\sum_{k=1}^{n} p_n = 1$$

Method

Divide [0,1] interval into n segments with lengths equal to p_1, p_2, \dots, p_n

Generate uniform random number u in [0,1]

□ If u reside $p_1 + ... + p_{k-1} < u < p_1 + ... + p_k$, then choose x_k as the value of x If $u < p_1$ $x = x_1$ Else if $u < p_1 + p_2$ $x = x_2$ Else if ... : : Else if $u < p_1 + \dots + p_{n-1}$ $x = x_{n-1}$ Else $x = x_n$ End if

2.2 The Inverse Function Method

■ The Inverse Function Method

General scheme for generating non-uniform random numbers

□ The method involves evaluation of indefinite integral

- cannot be applied to all types of PDF
- Methods

□ Y : uniform random variable in [0,1]

 $\Box \text{ transform } y \rightarrow x$

 \Box x are distributed according to PDF f(x)

2.2 The Inverse Function Method

$$P(y \le Y \le y + dy) = dy$$

$$P(x \le X \le x + dx) = \int_{x}^{x+dx} f(t)dt = f(x)dx$$

$$dy = f(x)dx$$

$$y = F(x)$$

$$x = F^{-1}(y)$$
Cumulative Distribution Function

i) First, we have to find CDF, F(x)

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

ii) First, we have to find inverse function, F⁻¹(y)

2.2 The Inverse Function Method

Graphical Interpretation of Inverse Function Method

2.3 Superposition Method

■ If CDF, F(x) can be written as a superposition of two or more functions *m*

$$F(x) = \sum_{k=1}^{m} c_k F_k(x)$$
$$c_k > 0$$
$$\sum_{k=1}^{m} c_k = 1$$

Choice of Fk(x) relies on the generation of discrete random integer variable Q

$$P(Q=k) = c_k$$

2.3 Superposition Method

Algorithm

 \square Randomly pick an integer u₁ from 1 to m according to c_1, \dots, c_k

• Use method for discrete random variables

 \square Randomly choose a value u_2 , in [0,1]

 $\Box x = F^{-1}_{k}(x)$

Example) $f(x) = (3/8) (1+x^2)$

- An inversion of CDF is not an easy task
- The case when the function similar to CDF is available
- Basic idea

W(x)

w(x)

b

f(x)

The comparison function w(x)

 $w(x) \ge f(x)$ for all x $W(x) = \int_{-\infty}^{x} w(x) dx$ can be calculated analytically $\int_{-\infty}^{\infty} w(x) dx = A$ The Generalized Rejection Method not 1 0.8 0.6 0.4 0.2 х x x+dx а

Algorithm

Generate random number u in [0,1]

then Au is a random number in [0,A]

 $\Box x = W^{-1}(Au)$

 $\Box \text{ choose a random y in } [0, w(x)]$

then, (x,y) is uniformly distributed in w(x)

 $\Box \text{ if } y <= f(x) \quad \rightarrow \text{ accept value}$

 $\Box \text{ if } y < f(x) \rightarrow \text{ reject value}$

• Points are distributed according to f(x)

■ The efficiency of generalized rejection method

 $e = \frac{\int_{-\infty}^{\infty} f(x) dx}{\int_{-\infty}^{\infty} w(x) dx} = 1/A$

For greater efficiency, $A \rightarrow 1$ (Inversion method)

Next Lecture

General Monte-Carlo Simulation Method Variance Reduction in Monte-Carlo Method