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1. Basic Statistics

 Probability and Statistics  
 Needed to understand for general simulation 

techniques
 Acquaintance with notation and symbols 

 Probability and Statistics in Simulation Methods
 Generation of random samples from a distribution
 Design of simulation experiments
 Statistical analysis of simulation data
 Validation of simulation model 



1.1 Discrete Random Variables 
and Their Properties

 The Probability theory says;
 Experiment – An outcome cannot be predicated with certainty 
 Sample Space (S) – All Possible outcome of an experiment

 A Random Variable X 
 Function or Rule that assigns a real number x
 Can be discrete or continuous

Examples of Sample Space 

Tossing a die
S = { 1, 2, 3, 4, 5, 6}

Tossing two dice
S = { (1,1), (1,2), …, (6,6)}

Examples of Random Variables

Tossing a die
x =1

Tossing two dice
x =7      (1,6)

X

x

Random Variable

Values taken



1.1 Discrete Random Variables 
and Their Properties

 Cumulative Distribution Function  F(x)
 The Probability that a random variable X takes on a 

value longer than x

Properties
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1.1 Discrete Random Variables 
and Their Properties

 Probability Mass Function  P(x)
 The Probability that a random variable X takes on the value x

 Properties

 Cumulative Distribution Function and Probability Mass 
Function for the outcome of tossing a die
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1.1 Discrete Random Variables 
and Their Properties

 Expected Value : E(X)
 the mean average value

 Example) The outcome of tossing a die
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 Variance
 Expected squared value of  deviation of X from the mean value 
 The measure of how values are distributed from the mean value

 Standard deviation 
 Square root of the variance

)(xV=σ
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1.1 Discrete Random Variables 
and Their Properties

• Properties
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1.1 Discrete Random Variables 
and Their Properties



1.2 Continuous Random Variables 
and Their Properties

 Cumulative Distribution Function of a Continuous  
Random Variable X

 Probability Density Function 
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1.2 Continuous Random Variables 
and Their Properties

 F(x) is non-decreasing function 



 Calculation of probability  

0)( ≥=
dx
dFxf

1)(                1)(
-

=→=∞ 
∞

∞
dxxfF

 )(   )( - )(   

)()()()()(

--
dxxfdxxfdxxf

aFbFaxPbxPbxaP
b

a

ab

 ==

−=≤−≤=≤≤

∞∞

Properties of probability distribution function f(x)



1.2 Continuous Random Variables 
and Their Properties

 The expected value

 Properties
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1.2 Continuous Random Variables 
and Their Properties

 Consider a random variable X , values are distributed 
uniformly in the interval [a,b]

 The probabilities are the same in [a,b]

 Requirement for normalization
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1.2 Continuous Random Variables 
and Their Properties

Uniform Probability Distribution Functions

 Cumulative Probability Distribution Function

 Expected Value 

 Variance
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1.2 Continuous Random Variables 
and Their Properties

Mapping to Different Domain

 Mapping 
 Pseudo random number generator (u) in [0,1]  x in [a,b]

u

0 1

u’

0 b-a

x

0 a b

uabu )(' −=

auabaux +−=+= )('



1.3 Normal Probability 
Distribution Function

 Normal probability distribution functions

 Parameters : μ and σ
 Normalization
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1.3 Normal Probability 
Distribution Function

 Normal probability distribution function
 Bell-shaped curve with a single peak at x= μ
 The value at the peak :
 The value of x when the value becomes the half of the peak value
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1.3 Normal Probability 
Distribution Function
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1.3 Normal Probability 
Distribution Function

 The Probability for finding X having value between x1 and x2
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1.3 Normal Probability 
Distribution Function

 99.7 % of the trial values fall within the range of (μ−3σ)
and (μ+3σ)
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1.3 Normal Probability 
Distribution Function

The most probable error 

 If there is equal chance that 
outcome will falls outside 
or inside of shaded region 
 most probable error 
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1.4 Sampling Distributions 

 Suppose we are interested in functions of N random 
variables 
 X1 … XN are independent 
 X1 … XN share the same distribution 

 Population sample mean

 The goodness of fit depends on the behavior of random 
variable 
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1.4 Sampling Distributions 

 Xn are independent, normally distributed variable 
 With common mean
 With common variance 

 It can be shown that, 
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1.5 Central Limit Theorem

 Let ; 
 X1 … XN are independent 
 X1 … XN share the same distribution 
 Each X1 … XN are not normally distributed 
Mean = μ , variance = σ2

 In nature, the behavior of variable often depends on the 
accumulated effect on large number of small random 
factors  behavior is approximately normal.

 Central Limit Theorem
 : Normal distribution 
 Mean value
 Variance 
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1.6 Central Limit Theorem and 
Monte Carlo Method

 In Monte Carlo Simulation, we compute a 
quantity of interest by random sampling 
population 

 The central limit theorem can be applied 
 Sampling scheme in MC simulation require 

reduction of the value σ “Variance Reduction 
Technique”



2. Generating Non-uniform 
Random Numbers

 Topics 
 Methods for generating random numbers those obey 

non-uniform probability distributions
• Discrete random variables
• The inverse function method
• The superposition method
• The rejection method  



2.1 Modeling a discrete 
random variables

 Method 
 Divide [0,1] interval into n segments with 

lengths equal to p1, p2, … , pn

 Generate uniform random number u in [0,1]
 If u reside p1 + … + pk-1 < u < p1 +…+pk , 

then choose xk as the value of x 

If u<p1
x = x1

Else if u < p1 + p2
x = x2

Else if …
:
:
Else if u<p1 + … +pn-1

x = xn-1
Else

x = xn
End if 

x x1 x2 … xn

p p1 p2 … pn

1
1

=
=

n

k
np



2.2 The Inverse 
Function Method

 The Inverse Function Method 
General scheme for generating non-uniform random 

numbers
The method involves evaluation of indefinite integral

• cannot be applied to all types of PDF 

 Methods 
 Y : uniform random variable in [0,1] 
 transform y x  
 x are distributed according to PDF f(x) 



2.2 The Inverse 
Function Method

)(
)(
)(

)()()(

)(

1 yFx
xFy

dxxfdy

dxxfdttfdxxXxP

dydyyYyP
dxx

x

−

+

=
=
=

==+≤≤

=+≤≤


y has uniform distribution in [0,1]

Cumulative Distribution Function

ii) First, we have to find inverse function, F-1(y)
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2.2 The Inverse 
Function Method

Graphical Interpretation of Inverse Function Method



[QUIZ]

 Find inverse function for 
 Uniform distribution  ,  f(x) = c, in [a,b] , otherwise f(x) 

= 0 

 Exponential distribution , f(x) = a exp(-ax)  for x>0 , 
otherwise, f(x) = 0 



2.3 Superposition Method

 If CDF, F(x) can be written as a superposition of two or 
more functions 

 Choice of Fk(x) relies on the generation of discrete random 
integer variable Q 
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2.3 Superposition Method

 Algorithm 
 Randomly pick an integer u1 from 1 to m according to c1,….,ck

• Use method for discrete random variables
 Randomly choose a value u2, in [0,1]
 x =F-1

k (x)

 Example ) f(x)= (3/8) (1+x2)



2.4 The generalized 
rejection method

An inversion of CDF is not an easy task 
 The case when the function similar to CDF is 

available 
 Basic idea 
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2.4 The generalized 
rejection method

 The comparison function w(x)

1not            )(

lyanalytical calculated becan            )()(

 x allfor          )()(

Adxxw

dxxwxW

xfxw
x

=

=

≥




∞

∞−

∞−



2.4 The generalized 
rejection method

Algorithm 
 Generate random number u in [0,1]

then Au is a random number in [0,A]
 x = W-1(Au)
 choose a random y in [ 0,w(x) ] 

then, (x,y) is uniformly distributed in w(x)
 if y <= f(x)  accept value
 if y < f(x) reject value 

 Points are distributed according to f(x)



2.4 The generalized 
rejection method

 The efficiency of generalized rejection method

 For greater efficiency, A 1  (Inversion method ) 
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Next Lecture

 General Monte-Carlo Simulation Method
 Variance Reduction in Monte-Carlo Method


