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Process Dynamics: Modeling, Analysis, and SimulationProcess Dynamics: Modeling, Analysis, and Simulation
By B. W. By B. W. Bequette Bequette (1998)(1998)

ObjectiveObjective: understand the dynamic behavior of chemical and biological processes

ModelingModeling:    1D, 2D, 3D
SimulationSimulation: FDM, FEM, FVM, OCM, etc.
AnalysisAnalysis:     Linear & nonlinear analysis

Steady & transient responses
Stability/ sensitivity analysis
Chaotic motions
Bifurcation analysis
…

àà ProcessabilityProcessability, productivity, productivity



Process modeling: differential equation systems 
time-dependent mathematical models of the chemical and

biological processes

ModelsModels: A set of equations (including input data) that allows us to predict 
the behavior of chemical and biological processes

Approximate representation of an actual processes

Fundamental modelsFundamental models: conservation of mass, momentum, energy. 
constitutive equations (Newton & viscoelatic models)
reaction kinetics, crystallization, transport phenomena,
thermodynamic relationships (phase equilibrium), etc.  

Empirical modelsEmpirical models: least square fit of experimental data, overall heat transfer coeff.
useful for “interpolation”, not “extrapolation”

The complexity of a process model depends on the final use of the model. 

How models are used:How models are used:
- Marketting, allocation, synthesis, design, operation, control, etc. 

Section I. Process ModelingSection I. Process Modeling
Chapter 1. IntroductionChapter 1. Introduction



- Algebraic equations Algebraic equations 
ODEsODEs
PDEsPDEs

- Example 1.1. A lumped parameter system
Perfect insulated CSTR
Uniform temperature in the tank
Temp. does not change with space.

- Steady stateSteady state: variables does not change with time
DynamicDynamic: variables change with time

- Lumped parameter systemsLumped parameter systems: variables change only with one independent variable
(time) – ODE systems, CSTR, etc.

Distributed parameter systemsDistributed parameter systems: ~ with more than one independent variable 
(time and space) – PDE systems, tubular reactor, etc.



- Example 1.2. A distributed parameter system
Counterflow heat exchanger

Temp. of the water system changes with time and space (position).

SystemsSystems
- SystemSystem: a combination of several pieces of equipment integrated to perform 

a specific function. 
(composed of chemical unit operations such as chemical reactors, heat  
exchangers, separation devices, etc.) 

- SimulationSimulation: steady-state simulation of lumped parameter systems: algebraic eqn.
dynamic simulation: ODEs

(PDE can be converted to ODEs by appropriate numerical techniques, i.e.,
method of lines)



- Linear system analysisLinear system analysis: Laplace transforms 
Eigenvalue and eigenvector analysis

- A broader view of analysisA broader view of analysis: Understand how the response of system variable
changes when a parameter or input changes.

Qualitative change of the systems



- Methodology for developing dynamic models of chemical and biological processes

Balance equationsBalance equations (see Books by Bird et al., Welty et al., and Deen)
- Steady state balance equationsSteady state balance equations:

(mass (M) or energy (E) entering a system) – (~ leaving~) =0
Generation and consumption of species by reaction can be included…

- Dynamic balancesDynamic balances:
(rate of M or E accumulation in a system) 

= (rate of M or E entering ~) – (rate of M or E leaving ~)
dM/dt, dE/dt, dNi/dt, …

- Integral balancesIntegral balances:
(M or E inside the system at t+∆t) – (M or E inside the system at t) =

(M or E entering ~ from t to t+∆t) – (M or E leaving ~ from t to t+∆t)

Chapter 2. Process ModelingChapter 2. Process Modeling



à ODE systems by mean-value theorem and differential calculus.

Example) Total mass balance equation

By mean-value theorem, 
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(V: volume, ρ: mass density, F: volumetric flowrate)



- Instantaneous balancesInstantaneous balances: 
(rate of accumulation of M in the system) = (rate of M entering) – (rate of M leaving)

Material balances Material balances 
- Example 2.1.: Liquid surge tank

ODE system – lumped parameter system
(initial condition V(0) is required)

State variable: V
Input variables: Fi, F
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- Example 2.2.: An isothermal chemical reactor
Overall material balance: 

Component material balance: (in molar units)
(A+2B à P)

(ri: rate of species i per unit volume, CAi, CBi: inlet conc. )

Assume: 

State variables: V, CA, CB, CP
Input variables: Fi, CAi, CBi
Parameter: k
Initial conditions: V(0), CA(0), CB(0), CP(0)
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- Example 2.3.: Gas surge drum
Pressure variation in the tank with time ?

Ideal gas law: 

Total amount of gas in the tank: 

Rate of accumulation of gas: d(PV/RT)/dt

State variable: P;  inputs: qi, q;  parameter: R, T, V;  initial conditions: P(0)

Constitutive relationshipsConstitutive relationships
Gas law, chemical reactions, equilibrium relationships, heat transfer, 
flow-through valves, etc. 
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Material and energy balancesMaterial and energy balances
- Review of thermodynamics

TE (total energy) = U (internal) + KE (kinetic) + PE (potential)
(KE = ½ mv2, PE=mgh) 

(In many chemical processes where there are thermal effects, the kinetic and   
potential energy terms can be neglected.)

- Example 2.4.: Stirred tank heater
Assumptions: kinetic and potential energy effects neglected.

changes in PV term neglected.

Material balance: 

Energy balance:
Accumulation=in by flow-out by flow 

+ in by heat transfer 
+ work done on system
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Distributed parameter systemsDistributed parameter systems
State variables change with time and space (PDE systems)

- Tubular reactor modeling under the convection flow
Balance equations: 
Material balance: 

By mean-value theorem and ∆t, ∆V à 0: 

Overall material balance:                          (for const. density)

(initial condition & one boundary condition)
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Dimensionless modelsDimensionless models
(simple constant volume, isothermal CSTR model)

Let 

General form of dynamic modelsGeneral form of dynamic models
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Section II. Numerical TechniquesSection II. Numerical Techniques
Chapter 3. Algebraic EquationsChapter 3. Algebraic Equations

IntroductionIntroduction
From steady state of find x (fixed points, equilibrium points)

General form for a linear system of equationsGeneral form for a linear system of equations

x is obtained by inverse of matrix A 
LU decomposition
Gauss or Gauss-Jordan elimination
Others…

Nonlinear functions of a single variableNonlinear functions of a single variable
Single solution & multiple solutions
Convergence tolerance: absolute tolerance

relative tolerance
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Iterative methods for finding solutions or rootsIterative methods for finding solutions or roots
à Fixed-point iteration, bisection, false position, Newton’s method

(1) Simple fixed-point iteration
One-point iteration or successive iteration
x=g(x) by rearranging the function f(x)=0, then xi+1=g(xi) 

EXAMPLEEXAMPLE

Linear convergent !!! Linear convergent !!! 

iter:    1   x:  0.000000000000000E+000
iter:    2   x:       1.000000000000000
iter:    3   x:  3.678794411714423E-001
iter:    4   x:  6.922006275553464E-001
iter:    5   x:  5.004735005636368E-001

…
iter:    20   x:  5.671570440012975E-001
iter:   21   x:  5.671354902062784E-001
iter:   22   x:  5.671477142601192E-001



Converging and diverging cases Converging and diverging cases 
of fixof fix--point iterationpoint iteration

Convergence conditionConvergence condition

FixedFixed--point iteration converges, point iteration converges, 
if if IgIg’’(x)I < 1(x)I < 1
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(2) Bisection method
If f(xL) and f(xU) have opposite signs, i.e., f(xL) f(xU) < 0, 

(f(x) is real and continuous)
then, there is at least one real root between xL and xU.

Bisection methodBisection method:: x interval is always divided in half.

Termination criteria and error estimates:
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““BruteBrute--forceforce”” method (inefficient)method (inefficient)



EXAMPLEEXAMPLE

Flow chart for bisection methodFlow chart for bisection method



(3)  False-position method
Alternative based on a graphical insight, instead of bisection method.
à Find a root from straight line connecting f(xL) and f(xU)
Replacement of the curve by a straight line à “false positionfalse position”
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False-position is more efficient than bisection method 



Most wisely used for finding roots
Initial guess of a root, old xià Find new xi+1 from tangent at old xi. 

(4)  Newton-Raphson method

Formula for N-R method
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Quadratic convergent !!!Quadratic convergent !!!



iter:          1 delta:  5.000000000000000E-001
iter:          2 delta:  6.631100319721815E-002
iter:          3 delta:  8.321618376440470E-004
iter:          4 delta:  1.253749188553222E-007
iter:          5 delta:  2.808428767121099E-015
root is  5.671432904097838E-001

EXAMPLEEXAMPLE

Flow chart for NFlow chart for N--R methodR method



(5) (5) NewtonNewton’’s method for multivariable problemss method for multivariable problems
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Example 3.3.
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