
Objectives:Objectives:
- Determine the bifurcation point for a single ODE
- Determine the stability of each branch of a bifurcation diagram
- Determine the number of steady-state solutions near a bifurcation point

BifurcationBifurcation occurs if the number of steady-state solutions changes as a
system parameter is changed. If the qualitative (stable vs unstable) behavior of a
system changes as a function of a parameter, we also refer to this as bifurcation
behavior.

- Important for complex systems such as chemical and biochemical reactors. 

1. Illustration of Bifurcation Behavior1. Illustration of Bifurcation Behavior

µ<0: one steady-state
µ>0: three steady-states
à µ=0: bifurcation point 

(pitchfork bifurcation) 
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2. 2. Types of BifurcationTypes of Bifurcation

- Pitchfork bifurcation
- Saddle-node bifurcation
- Transcritical bifurcation

- Consider general dynamic equation:                             steady-state: 

Bifurcation pointBifurcation point:                              (first derivative: Jacobian for the single Eqn.)

à eigenvalue = 0 at a bifurcation point

Number of solutionsNumber of solutions from catastrophe theory: 

Example 1Example 1: Pitchfork BifurcationPitchfork Bifurcation

Steady state solutions: 

Jacobian: 

(1) µ<0: one steady-state, xs0=0, stability: stable (negative eigenvalue)
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(2) µ>0: three steady-states

Bifurcation point: 

Number of solutions: 3 in the vicinity of the bifurcation point
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Example 2Example 2: SaddleSaddle--Node Bifurcation (Turning Point)Node Bifurcation (Turning Point)

Steady state solutions: 

Jacobian: 

Bifurcation point: 

2 solutions around the bifurcation point 
(1) µ<0: no real solutions

(2) µ>0: 
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Example 3Example 3: TranscriticalTranscritical BifurcationBifurcation

Steady state solutions: 

Jacobian: 

Bifurcation point: 

2 solutions around the bifurcation point 
(1) µ<0:

(2) µ>0: 
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Example 4Example 4: Hysteresis Hysteresis BehaviorBehavior

u: adjustable input parameter
µ: design-related parameter

(1) µ=-1: Steady state solutions: 

Jacobian:                         always negative (no bifurcation point)

(2) µ=1: Steady state solutions:                              for example: 
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Cusp catastrophe diagramCusp catastrophe diagram TwoTwo--parameter bifurcation diagramparameter bifurcation diagram



Objectives:Objectives:
- Find bifurcations that occur in two-state systems (pitchfork, saddle-node, transcritical) 
- Understand the difference between limit cycles (nonlinear behavior) and centers

(linear behavior)
- Distinguish between stable and unstable limit cycles
- Determine the conditions for a Hopf bifurcation (subcritical and supercritical) 

1. Single Dimensional Bifurcation in the Phase1. Single Dimensional Bifurcation in the Phase--PlanePlane

(1) µ<0: one steady-state, xs0=0, stability: stable

(2) µ=0: one steady-state, xs0=0, stability: stable

(3) µ>0: three steady-states, 
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IIIIII--2. Bifurcation Behavior of Two2. Bifurcation Behavior of Two--State SystemsState Systems
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Pitchfork bifurcation behaviorPitchfork bifurcation behavior

µ µ

2. Limit Cycle Behavior2. Limit Cycle Behavior
- Center occurs in linear systems that have eigenvalues with zero real part

Different initial conditions à different closed-cycles. 
- Limit cycles are isolated closed orbits in nonlinear systems. 

Perturbations in initial conditions
à returns to the closed cycle 

(for stable limit cycle)

CenterCenterLimit cycleLimit cycle



Ex)Ex) A Stable Limit CycleA Stable Limit Cycle

Steady state solutions: r=0 and r=1

Jacobian: 1
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r=1: unstable

(Angle is constantly decreasing. Stability of this system is determined by the first eqn.)

Ex)Ex) An Unstable Limit CycleAn Unstable Limit Cycle

Steady state solutions: r=0 and r=1

Jacobian: 

Unstable limit cycle behaviorUnstable limit cycle behavior



3. 3. HopfHopf BifurcationBifurcation
Remind: Point where the number of solutions changed was the bifurcation point.

An exchange of stability generally occurred at the bifurcation point.

HopfHopf bifurcationbifurcation occurs when a limit cycle forms as a parameter is varied.

Ex)Ex) Supercritical Supercritical HopfHopf BifurcationBifurcation

- Steady state solutions: 

- Jacobian: 

- Stability:
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• Determine the stability of this system in Cartesian coordinates

- Steady state: 

- Jacobian: 

- Eigenvalues: λ=µ±1i
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