Nonlinear Systems Analysis III-1. Bifurcation Behavior of Single ODE systems

Objectives:

- Determine the bifurcation point for a single ODE
- Determine the stability of each branch of a bifurcation diagram
- Determine the number of steady-state solutions near a bifurcation point

Bifurcation occurs if the number of steady-state solutions changes as a system parameter is changed. If the qualitative (stable vs unstable) behavior of a system changes as a function of a parameter, we also refer to this as bifurcation behavior.

- Important for complex systems such as chemical and biochemical reactors.

1. Illustration of Bifurcation Behavior

 $f(x,\mu) = \mu x - x^3 = 0$

 μ <0: one steady-state μ >0: three steady-states \rightarrow μ =0: bifurcation point (pitchfork bifurcation)

2. Types of Bifurcation

- Pitchfork bifurcation
- Saddle-node bifurcation
- Transcritical bifurcation

- Consider general dynamic equation: $\dot{x} = f(x,\mu)$ steady-state: $0 = f(x,\mu)$ <u>Bifurcation point</u>: $f(x,\mu) = \frac{\partial f}{\partial x} = 0$ (first derivative: Jacobian for the single Eqn.) \rightarrow eigenvalue = 0 at a bifurcation point

Number of solutions from catastrophe theory:

$$f(x,\mu) = \frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial x^2} = \dots = \frac{\partial^{k-1} f}{\partial x^{k-1}} = 0 \text{ and } \frac{\partial^k f}{\partial x^k} \neq 0$$

Example 1: Pitchfork Bifurcation

$$\dot{x} = f(x,\mu) = \mu x - x^3$$
 Steady state solutions: $x_{s0} = 0, x_{s1} = \sqrt{\mu}, x_{s2} = -\sqrt{\mu}$
Jacobian: $\frac{\partial f}{\partial x}\Big|_{x_s,\mu_s} = -3x_s^2 + \mu_s = \lambda$ (eigenvalue)

(1) μ <0: one steady-state, x_{s0} =0, stability: stable (negative eigenvalue)

Example 2: Saddle-Node Bifurcation (Turning Point)

$$\dot{x} = f(x,\mu) = \mu - x^{2} \quad \text{Steady state solutions:} \quad x_{s1} = \sqrt{\mu}, x_{s2} = -\sqrt{\mu}$$

$$\begin{array}{c} \text{Jacobian:} \quad \frac{\partial f}{\partial x}\Big|_{x_{s},\mu_{s}} = -2x_{s} = \lambda(\text{eigenvalue}) \\ \text{Bifurcation point:} \quad \mu_{s} = 0, x_{s} = 0 \\ \textbf{2} \text{ solutions around the bifurcation point} \quad \left(\frac{\partial^{2} f}{\partial x^{2}}\Big|_{x_{s},\mu_{s}} \neq 0\right) \\ (1) \ \mu < 0: \text{ no real solutions} \\ (2) \ \mu > 0: \text{ a. } x_{s1} = \sqrt{\mu}: \ \lambda = -2\sqrt{\mu} \rightarrow \text{ stable} \\ \text{ b. } x_{s2} = -\sqrt{\mu}: \ \lambda = 2\sqrt{\mu} \rightarrow \text{ unstable} \end{array}$$

$$\begin{array}{c} \text{Saddle-node bifurcation diagram} \\ \textbf{3} \end{array}$$

Example 3: Transcritical Bifurcation

$$\dot{x} = f(x,\mu) = \mu x - x^{2} \text{ Steady state solutions: } x_{s1} = 0, x_{s2} = \mu$$

$$Jacobian: \left. \frac{\partial f}{\partial x} \right|_{x_{s},\mu_{s}} = \mu - 2x_{s} = \lambda(\text{eigenvalue})$$
Bifurcation point: $\mu_{s} = 0, x_{s} = 0$
2 solutions around the bifurcation point $\left(\frac{\partial^{2} f}{\partial x^{2}} \right|_{x_{s},\mu_{s}} \neq 0$
(1) $\mu < 0$: a. $x_{s1} = 0$: $\lambda = \mu \rightarrow \text{stable}$
b. $x_{s2} = \mu$: $\lambda = -\mu \rightarrow \text{unstable}$
(2) $\mu > 0$: a. $x_{s1} = 0$: $\lambda = \mu \rightarrow \text{unstable}$
Dynamic response
$$\int_{a}^{b} \frac{\pi - \mu}{\sqrt{a} - \mu} \int_{a}^{b} \frac{\pi - \mu}{\sqrt{a} - \mu} \int_{$$

Example 4: Hysteresis Behavior

$$\begin{split} \dot{x} &= f(x,\mu) = u + \mu x - x^3 \quad \text{u: adjustable input parameter} \\ \mu: \text{ design-related parameter} \quad \left(\frac{\partial^2 f}{\partial x^2} \Big|_{x_s,\mu_s} \neq 0 \right) \\ \text{(1) } \mu &= -1: \text{ Steady state solutions: } u = x_s + x_s^3 \\ \text{ Jacobian: } \left. \frac{\partial f}{\partial x} \right|_{x_s,\mu_s} = -1 - 3x_s^2 \quad \text{always negative (no bifurcation point)} \end{split}$$

(2) μ =1: Steady state solutions: $u + x_s - x_s^3 = 0$ for example:

Hysteresis behavior

 $x_s = 1(s), 0(u), -1(s)$ for u = 0

Cusp catastrophe diagram

Two-parameter bifurcation diagram

Nonlinear Systems Analysis III-2. Bifurcation Behavior of Two-State Systems

Objectives:

- Find bifurcations that occur in two-state systems (pitchfork, saddle-node, transcritical)
- Understand the difference between limit cycles (nonlinear behavior) and centers (linear behavior)
- Distinguish between stable and unstable limit cycles
- Determine the conditions for a Hopf bifurcation (subcritical and supercritical)

1. Single Dimensional Bifurcation in the Phase-Plane

$$\dot{x}_1 = f_1(x,\mu) = \mu x_1 - x_1^3 \quad \text{Steady state solutions:} \quad \underline{x}_s = (0,0) \text{ or } (\sqrt{\mu},0) \text{ or } (-\sqrt{\mu},0)$$
$$\dot{x}_2 = f_2(x,\mu) = -x_2 \quad \text{Jacobian:} \quad \underline{J} = \begin{bmatrix} \mu - 3x_{1s}^2 & 0\\ 0 & -1 \end{bmatrix}$$

(1) μ <0: one steady-state, x_{s0} =0, stability: stable

(2) μ =0: one steady-state, x_{s0} =0, stability: stable

(3) μ >0: three steady-states, $\underline{x}_s = (0,0)$ or $(\sqrt{\mu},0)$ or $(-\sqrt{\mu},0)$

2. Limit Cycle Behavior

- Center occurs in linear systems that have eigenvalues with zero real part Different initial conditions → different closed-cycles.
- Limit cycles are isolated closed orbits in nonlinear systems.
 - Perturbations in initial conditions
 - → returns to the closed cycle (for stable limit cycle)

Ex) A Stable Limit Cycle

$$\dot{\mathbf{r}} = \mathbf{r}(1 - \mathbf{r}^2)$$
 Steady state solutions: r=0 and r=1 \rightarrow r=0: unstable
 $\dot{\mathbf{\theta}} = -1$ Jacobian: $\frac{\partial f}{\partial x} = -1 - 3\mathbf{r}^2$ r=1: stable

(Angle is constantly decreasing. Stability of this system is determined by the first eqn.)

3. Hopf Bifurcation

Remind: Point where the number of solutions changed was the bifurcation point. An exchange of stability generally occurred at the bifurcation point.

Hopf bifurcation occurs when a limit cycle forms as a parameter is varied.

Ex) Supercritical Hopf Bifurcation

$$\dot{x}_1 = x_2 + x_1(\mu - x_1^2 - x_2^2)$$
$$\dot{x}_2 = -x_1 + x_2(\mu - x_1^2 - x_2^2)$$

 \Rightarrow in polar coordinates

$$\dot{\mathbf{r}} = \mathbf{r}(\boldsymbol{\mu} - \mathbf{r}^2), \ \dot{\boldsymbol{\theta}} = -2$$

 $\dot{r} = r(\mu - r^2), \ \theta = -1$ - Steady state solutions: $r = 0, \sqrt{\mu}, -\sqrt{\mu}$

- Jacobian: $\frac{\partial f}{\partial x} = \mu - 3r^2$

- Stability:

(1)
$$\mu < 0 : r = 0$$
 (stable)
(2) $\mu = 0 : r = 0$ (stable)
(3) $\mu > 0 : r = 0$ (unstable), $\pm \sqrt{\mu}$ (stable)

Phase plane plot

- Determine the stability of this system in Cartesian coordinates
- Steady state: $\underline{\mathbf{x}}_{s} = (0,0)$

- Jacobian:

$$\underbrace{\mathbf{J}}_{=} = \begin{bmatrix} \mu - 3x_1^2 - x_2^2 & 1 - 2x_1x_2 \\ -1 - 2x_1x_2 & \mu - x_1^2 - 3x_2^2 \end{bmatrix} \Rightarrow \begin{bmatrix} \mu & 1 \\ -1 & \mu \end{bmatrix}$$

- Eigenvalues: $\lambda = \mu \pm 1i$

