Interfacial Chemistry: **General Concepts**

Dong-Myung Shin Hongik University Department of Chemical Engineering

<u>| Introduction – Terminology</u>

- \bullet **Physical world b/w two distinct and identifiable phases of matter.**
- **Terminology: Surface vs. Interface - interchangable Surface: b/w condensed phase and gas phase or vacuum Interface: b/w two condensed phases. - better choice!**
- **Interfaces: Vacuum vs. Liquid , Solid, liquid vs. Liquid, Solid, Gas Solid Vs. Liquid, Solid, Gas**

<u>| Introduction – Terminology</u>

• 실제 예

\blacksquare Introduction – THE NATURE OF INTERFCAES

THE NATURE OF INTERFCAES

 \bullet **Existence of two phases : intensive properties of the system change b/w two.**

INTERFACIAL FREE ENERGY

- \bullet **To extend or enlarge the interface - Need work!**
- \bullet **If** ∆**G < 0 : It cannot exist as a stable boundary. Spontaneous transformation**
- \bullet
- **Kinetic Vs. Thermodynamic**
- \bullet **Thermodynamically Stable; ultimate goal, but take long time to achieve.**
- \bullet **Kinetically Stable, or Metastable: can be sufficient for particular goal.**

Introduction – Interface and Energy

Interface and Energy

뗄 수 없는 관계

- \bullet **Minimum total free energy**
- \bullet **if G is high, it will be reduced to a minimum.**
- \bullet **The two phases will separate to the greatest extent.**
- **Composition Change - Kind of LeCatelier Principle.**
- \bullet **alter the energetic drive**
- \bullet **alter the rate**
- \bullet **or both**

- Prolonging the life of the dispersed system.

• **Surface Free Energy**

What is it meant by?

Unique characters of surface stem from atoms and molecules at the surface and Interfaces.

Significantly different energies and reactivities.

New surface - Increase in free energy.

Proportional to the area (A) proportional to the surface density of units. Depend on the distance.

When distance is infinite - energy of the system becomes constant

Figure 2.1. Schematic representation of changes in interatomic or intermolecular forces during formation of a new surface: (a) equilibrium position of bulk units; (b) at separation distance H , incipient surface units continue to interact, but to a reduced extent; (c) at separation distance of infinity (effectively) surface units interact only with adjacent bulk units, giving rise to the existence of an excess surface energy.

• **Surface Free Energy**

∆**G =** ∆**W =2**σ**A**

^σ**: Surface or interfacial tension or energy W : the amount of reversible work necessary to overcome the attractive force between the units at the new surface or interface.**

 \bigcap **Work of cohesion, W_c** 표면장력이 σ 인 물질의 단위 면적을 두 면으로 나누는데 필요한 가역적인 일 **Wc = 2**^σ

゚Ṗ㡃㩗㧎 㧊 㧞┺Ⳋ**: heat generation, chemical change, ..**

• **Work of adhesion**

두개의 다른 물질이나 상을 계면에서 단위면적에 대하여 분리하는데 필요한 가역적인 일 **W**_a (12)= σ_1 + σ_2 + σ_{12}

adhesion.

• **Surface Free Energy**

Problems:

One cm3 of water is broken into droplets having a radius of 10-5 cm. If the surface tension of water is 72 dynes/cm, calculate the free energy of the fine droplets relative to that of the water.

Sol: 0.523 cal $= 0.523 cal$ $a = 2.19 \times 10^7$ dyne · cm $= 2.19 \times 10^7$ ergs $= 2.19$ J \times (1*cal* / 4.184 J) $\text{surface energy} = (72.8 dyne / cm) \times 3.01 \times 10^5 cm^2$ $S = ns = 3.01 \times 10^5 cm^2$ $n = 1/1 - \pi r$ $s = 4\pi (1 \times 10^{-5})^2 = 1.26 \times 10^{-9}$ cm²/drop $1/[\frac{4}{3}\pi r^3]$ = 2.39×10¹⁴ drops $= 1/[\frac{1}{2} \pi r^3] = 2.39 \times 10^{14}$

<u>이 값의 의미?</u>

khtroduction – Energetics and New Surface

Energetics and New Surface

Liquid phase dissipate some of the excess energy

 \blacksquare **liquid, solid-liquid interfaces 는 interfacial tension**이 매우 적다.

Figure 2.3. Energetic consequences of distance of surface separation in (a) a vacuum and (b) in the presence of an intervening fluid phase.

- **Increase In surface energy** \rightarrow **Minimization of Surface E.**
	- **minimize in surface area -(Sphere,..)**
	- **relocation of atom or molecules**
	- **Adsorption**
- **Forming New Surface Eg.) Sinking Needle (**⓮㦚 㯳⮮㑮 㥚㠦 㞚㭒 ㌊㰳 㢂⩺ ⏩㦖 ἓ㤆**)** 이 것이 물에 가라앉게 되서 계면이 늘어나는 것과 줄어드는 것이 있다. **Increasing water surface** ˩ **vapor phase , and interface b/w needle and water**Against (계면이 늘어나면서 energy가 증가는 것에 대한 중력) **Force driving needle to sink (Mass X gravity).**

- **Force Acting b/w Molecules**
- **In Bulk Phase – equal strength in all side, time averaged equilibrium position**
- **At Interface – Pull into the bulk phase is stronger Net density at the surface region is decreased. – more space b/w**
- **Surface Tension (Energy) - The force of the spring pulling along the surface**
- \bullet ▪ 다음 page 그림 참조

- **Force Acting b/w Molecules**
- \bullet **In Bulk Phase**
- •**- At Interface**

Figure 2.4. Schematic representation of the spring model of surface energy: (a) for the individual atom, location at the surface results in an unbalanced force pulling it into the bulk; (b) for the surface in general, the summation of the individual attraction for the units produces the net effect of surface tension or surface energy.

- **Force Acting b/w Molecules**
- **In Bulk Phase - At Interface**
- • **Consider a solid composed of spherical molecules in a close-packed arrangement.**

The molecules are bound by a cohesive energy E per mole and $\varepsilon = E/N$ per molecule. Each molecule is bound to twelve other; the bond strength is ϵ /12. If the surface layer is close packed, a molecule on the surface is bonded to a total of only nine neighbors. Then the total binding energy of surface molecule is $9 \epsilon/12 = 3/4 \epsilon$. 75% of binding energy of a molecule in the bulk. 이 값의 의미는?

•**Application to Solid-Vacuum or Solid-Liquid Interfaces**

Force and stress experienced by atoms and molecules near surface differ!

- **- Stress is not isotropic.**
- **-Many deformation – Heterogeneous nature. – History Dependent**
- **---TENSION is normally applied to the interface b/w two fluid phases.**
- **--- ENERGY is most often employed w/ at least one solid phase.**

Figure 2.5. Schematic illustration of a "typical" solid interfacial region: (a) physical profile and (b) concentration profile.

Introduction – Standard Reference States

- **Standard Reference States** 상대적인 비교가 물리화학적 처리 간편
- \bullet **Zero Separation**을 기준
- \bullet 무한대에서 거리를 기준

Introduction – Interfacial Region

- **Molecular Nature of the Interfacial Region**
- **-Free energy of surface arises due to asymmetric force acting on atoms or molecules.**
- •**Two Phases**
- \bullet **Solid – Vacuum or inert gas**
- **Transition Region : one molecular thickness. Very Sharp Boundary**
- •**Pure Liquid – Pure Vapor**
- \bullet **Transition Region : Several Molecular diameter thickness.**
- \bullet **Mixed Liquid –Vapor**
- **Transition Region : Depends on the volatility and miscibility**
- **Temperature Dependence;**
- \bullet **Higher Temp. -> thicker interface**
- \bullet **Above Critical Temp. -> No interface**

Introduction – Interfacial Region

- **Molecular Nature of the Interfacial Region**
- **schematics of Liquid – Vapor Interface**

 \bullet

Figure 2.6. Schematic illustration of the change in concentration in going through a liquid--vapor interface.

Introduction – Interfacial Region

schematics of Positive solute adsorption

Figure 2.7. Schematic illustration of positive solute adsorption at (a) the solution--fluid and (b) solid--solution interfaces.

Introduction – Gibbs Surface Excess

 \bullet **The Gibbs Surface Excess**

System: Substance i

In one or two phases ^α **and** β**. α(C_iα), unit concentration of i in phase α, 는 균일.** β**(Ci**^β**)**☚ ‶㧒 㭒㠊㰚 䞒 ^α**(V**α**)**㢖 β**(V**β**)**㠦 ╖䞮㡂 **ⁱ**㦮 㩚㼊⨟㧎 **ni**^⓪ ┺㦢ὒ ṯ┺**.**

$$
n_i = (C_i^{\alpha} V_{\alpha} + C_i^{\beta} V_{\beta})
$$

그러나, Ci가 interface를 지남에 따라 변하기 때문에 i의 양이 interface 영역에 따라 다르게 된다.

㧊 㹾㧊⯒ **ⁱ** 㠦 ╖䞲 **surface excess amount (ni**σ**)**[⪲] 㝆ἶ ┺㦢 㔳ὒ ṯ┺**.**

$$
n_i^{\sigma} = n_i - (C_i^{\alpha} V_{\alpha} + C_i^{\beta} V_{\beta})
$$

ii 전체 양에서 각 phase 에 분포된 양을 빼준 값.

Introduction – Gibbs Surface Excess

- •Interface가 존재하기 때문에 n_i^σ 이 있게 된다. 이 양은 α와 β의 전이 영역에 서 i의 농도 변화 곡선에 의존하게 된다.
- \bullet $\frac{1}{2}$ 세적인 측면에서 보면, surface excess는 표면에 흡착된 i의 양으로 생각.
- •이론적으로 문제가 되는 것은, α와 β의 전이 영역을 정의하는 문제이다.
- \bullet • Gibb's 의 접근법에서는 interface를 다음과 같이 정의한다.
- •• - 한가지 물질의 농도(예: 물질α)가 0이 되는 영역. – 용액에서는 α가 용매가 된다.

Figure 2.8. Illustration of the Gibbs approach to location of the dividing surface: (a) component α (solvent) and (b) component i (solute). The Gibbs dividing surface (GDS) is defined as the point where the shaded areas in (a) are equal --- ie, the adsorption of component α at the $interface = 0.$

Gibbs Dividing Surface (GDS) Ἤ⫰ **(a)**㜄㉐ ⾋Ἴ 㾐 ⺴⺸㢨 ᵍ㙸㫴 는 점을 중심으로 설정

Introduction – Gibbs Surface Excess

- •계면을 A^o로 국한하면,
- •• α에 대하여 i의 surface excess conc. Γˌ^(α)는 (과잉된 양을 면적으로 나눈다)

$$
\Gamma_i^{(\alpha)} = n_i^{\sigma} / A^{\sigma}
$$

Gibbs Plane은 수학적 모델로 평면을 의미하고, 실제로는 i 가 3차원적으로 존 재한다. 이 수학적 모델로 Gibbs흡착식 나온다.

surface: (a) component α (solvent) and (b) component i (solute). The Gibbs dividing surface (GDS) is defined as the point where the shaded areas in (a) are equal --- ie, the adsorption of component α at the $interface = 0.$

Gibbs Dividing Surface (GDS) Ἤ⫰ **(a)**㜄㉐ ⾋Ἴ 㾐 ⺴⺸㢨 ᵍ㙸㫴 는 점을 중심으로 설정

Introduction – **Adsorptior**

Adsorption

- **- One way to lower the overall energy of a system.**
- **Mostly empirical observation and conceptual insight rather than fundamental first priciples.**

Computer can help to attack problems - still not practical. Adsorption은 어떤 물질이 다른 물질의 표면에 묶여 있는 것을 말한다.

• **Adsorption** $Liquid-Vapor가$ Solid-Vapor보다 다루기 쉽다. -Solid의 표면이 매우 불규칙하기 때문이고, 처리 과정에 의존적임. Solid에 흡착이 이루어지는 경우

- **solid**⓪ **adsorbent**
- **-**䦷㹿♲ ⶒ㰞㦖 **adsorbate**

물질이 다른 상에 흡수되어 들어가는 경우까지를 포함하여 일반적인 용어는 **sorption**

- 이러한 흡착과정을 다룰 때에는, 다음 두 가지를 꼭 생각해 주어야 한다.
- (1) 흡착된 물질이 계의 최종 평형 계면 에너지에 미치는 영향
- (2) 흡착과정의 속도론

• **Gibbs Adsorption equation Bulk phase** α㦮 ㌗㦚 㩫㦮䞮₆ 㥚䞮㡂⓪**,** 㡾☚ **^T**^α**,** 䞒 **^V**^α**,** 㫆㎇**ni**^α 㢖 ṯ㦖 ⼖㑮 를 확정 지어 주어야 한다.

계의 압력, P^α가 확정되면, Helmholtz free energy F가 다음과 같이 된다. $F^{\alpha} = -S^{\alpha}T^{\alpha} - P^{\alpha}V^{\alpha} - \Sigma\mu_{i}^{\alpha} n_{i}^{\alpha}$ (2.7) ⹎䞲 䡫㦖 **(P**Ṗ 㧒㩫䞶➢**)** $dF^{\alpha} = -S^{\alpha}dT^{\alpha} - P^{\alpha}dV^{\alpha} - \Sigma\mu^{\alpha}d\Omega_{\alpha}^{\alpha}$ (2.8) 두 상이 존재하는 계에 대하여, 두 번째상을 β 상이라고 하자. 평형상태에서 T, P와 화학포텐샬μ가 두 상에서 같다.

단지 고려해 주어야 할 것은 계면의 존재로 인하여 전체계의 energy에 기여하는 부분을 고려하는 것이다.

• **Gibbs Adsorption equation** 㩚㼊 **energy**⓪ $\mathbf{F}^{\mathrm{T}} = \mathbf{F}^{\alpha} + \mathbf{F}^{\beta} + \mathbf{F}^{\sigma}$ (2.9) \mathbf{F}^σ 는 interfacial free energy이다. Interfacial area가 상대적으로 작은 bulk의 경우에는 이것을 무시할 수 있다.

위에 있는 식과 같은 방법으로 표면의 자유에너지를 전개하면 **dF**^σ **= -S**σ**dT+** ^σ**dA**^σ**-**Σµ **ⁱ dni**^σ **(2.10)** $\mathsf{\sigma}$ 는 interfacial tension between α and β. $\mathsf{\mu}_{\mathsf{i}}$ 는 bulk phase와 같다.

σdΑσ는 위식에서 PdV를 대체한 식이다. 부피 대신 면적을 사용하였다.

그리고, 표면장력의 경우에는 tension으로 잡아 당기는 힘이고, 압력은 미는 힘이 기 때문에 앞에 사용한 부호가 +로 바뀌었다.

• **Gibbs Adsorption equation** $bulk$ 의 경우에 식2.8을 적분하면, Gibbs-Duhem식을 얻을 수 있다. $F^{\alpha} = PV^{\alpha} - \sum \mu_i^{\alpha} n_i^{\alpha}$ (2.11)

평형에서, 미분하게 되면, **dF**^α **= -S**α**dT**α**-V**α**dP ⁺**Σ**n ⁱ**^α **^d**^µ **ⁱ**^α **=0 (2.12)**

ṯ㦖 ⻫㦚 **interfacial phase**㠦 㩗㣿䞮Ⳋ**, -S**σ**dT+ A**σ**d**^σ **⁺** ^Σ**ⁿ ⁱ**^σ **d**µ**ⁱ=0 (2.13)**

㧒㩫㡾☚㠦㍲**,** 㔳 **2.13**㦖 ┺㦢ὒ ṯ㧊 ♲┺**. d**^σ **⁼** ^Σ**ⁿ ⁱ**^σ **d**µ**ⁱ / A**^σ **(2.14)** 또는 Γ_ι = n _iσ / Ασ 이면, **-d**^σ **⁼** ΣΓι **^d**µ**ⁱ** Ṗ ♲┺**. (2.15)**

Gibbs Adsorption equation -d^σ **⁼** ΣΓι **^d**µ**ⁱ (2.15)**

surface excess concentration이 0이 되는Gibbs dividing surface가 정의된 liquid-vaporἚ㠦㍲**,** 㔳**2.15**㦮 㩗㦖 䞚㣪䞮㰖 㞠ἶ**,** ┾㰖 **liquid phase**㦮 $\mathsf{surface}\ \mathsf{tension}$ 과 용질 i의 surface excess concentration, $\Gamma_{\!\scriptscriptstyle{\mathsf{t}}}$,과의 관계를 얻을 수 있다.

㧊 ὖἚ⯒ 䐋䞮㡂 㔺䠮㩗㦒⪲ 㠑㦚 㑮 㧞⓪ **surface tension**㦚 䐋䞮㡂 **surface** excess concentration을 구할 수 있다.

$\sf{Surface~Tension~(}$ 실험적 측정치) → Surface Excess Conc. (구하기 힘든 값) + 기타 계에 대한 간접적 정 \overrightarrow{H}

• **Gibbs Adsorption equation** 보다 일반적으로 쓰이는 Gibbs adsorption equn. 은 $d\sigma = -\Sigma\Gamma_2(1)d\mu_2$ **(2.16)** 㡂₆㍲ **²**⓪ **bulk phase 1**㠦 ⏏㞚 㧞⓪ 㣿㰞㦚 Ⱖ䞲┺**.**

평형에서는 각각의 구성 요소의 화학potential이 같기 때문에, interface에서의 μ_{i} 도 bulk phase의 값을 쓰면 된다.

 $d\mu_2$ = RT dln a_2 [1] = RT dln $X_2 \gamma_2$ (2.17)

여기서 a₂[1]는 bulk phase [1]에서 2의 활동도. **X2**^⓪ **mole fraction,** γ**2**^⓪ 䢲☯☚ Ἒ㑮**.**

```
㔳2.16㠦 ⍹㦒Ⳋ,
d\sigma = -\Sigma\Gamma_2(1)d\mu_2 = -RT\Sigma\Gamma_2(1) dln X_2\gamma_2 (2.18)
```
• **Gibbs Adsorption equation**

어떤 평형 상태에서나, 물질의 화학 potential은 농도에 따라 증가한다. (물론 직선 적으로 증가하는 것은 아니다.) µ,의 증가에 따라 Γ,도같이 증가하게 되고 표면 장력 σ는 줄게 된다.

 $[2]$ (용질의 농도) ↑ µ₂ ↑ Γ₂ ↑ σ ↓

䚲Ⳋ㠦 ⰺ㤆 㧮 䦷㹿㧊 ♮⓪ ⶒ㰞㦚**surface active material** ⡦⓪ **surfactant**⧒ 한다. bulk에서의 농도가 조그만 변해도 표면장력이 심하게 변하는 물질이다.

- **Gibbs Adsorption equation**
- \bullet **d** σ = $\text{Tr}_{2}(1)$ **d** μ_{2} = $\text{Tr}_{2}(1)$ **dln** $X_{2} \gamma_{2}$ (2.18)

농도가 매우 작은 경우에 γ₂는 1에 가깝기 때문에 식 2.18에서 마지막 항이 몰농도 인 c₂로 쓸 수 있다. 따라서 표면에 부착되는 양의 상대적인 비교를 위하여는 계 면장력을 측정함으로써 알 수 있다.

 $\Gamma_2(1) = -1/RT$ [dσ / d ln c₂] (2.19)

Liquid - Liquid interface㠦㍲⓪ ^σ䁷㩫 䤚 ^Γ⯒ Ἒ㌆**. Solid - Liquid interface**㜄㉐⏈ ^σ㽕㥉㢨 㙼╌⦐**,** 㫵㥅 ^Γ⪰ 㽕㥉䚐␘**.**

- **Gibbs Adsorption equation** 이러한 양의 측정은 다음과 같은 분야에 중요하다.
- \bigodot **Colloidal stabilty**
- \bullet **wetting phenomena, fluid displacement in capillary**
- \bullet **emulsification and demulsification**
- \bigodot **foam formation and destruction**
- \bullet **adhesion**
- \bullet **lubrication**
- \bullet **Pharmaceuticals, cosmetics, food preparation, inks, paints, adhesives, lubricants, crude oil recovery techniques, mineral ore separations, wastewater treatment , heterogeneous catalysis, lithographic and xerographic printing techniques , microelectronic fabrication, photographic and magnetic recording media.**