1.6 Molar mass

- ・Low molar mass substances (oligomers) : m. p.↑ with MW↑.
- ・High molar mass substances (polymers) : m. p. constant with MW↑ but, rheological properties : (ex.) melt viscosity \uparrow with MW \uparrow

Molar mass distribution (3 ~ 4 지수 정도의 범위로 분포)

∙ *Number average molecular weight*

$$
\overline{M}_n = \frac{\sum N_i M_i}{\sum N_i} = \sum n_i M_i = \frac{\sum W_i}{\sum \frac{W_i}{M_i}} = \frac{1}{\sum \frac{W_i}{M_i}}
$$

- N_i = # of molecules
- n_i = numerical fraction or number fraction (= mole fraction x_i) n_i
- V_i = mass of M_i W_i
- = weight fraction or mass fraction *wi*

∙ *Weight average molecular weight*

$$
\overline{M}_{w} = \frac{\sum N_{i} M_{i}^{2}}{\sum N_{i} M_{i}} = \frac{\sum W_{i} M_{i}}{\sum W_{i}} = \sum w_{i} M_{i}
$$

∙ *Viscosity average molecular weight*

$$
\overline{M}_{v} = \left(\frac{\sum N_{i} M_{i}^{1+a}}{\sum N_{i} M_{i}}\right)^{1/a} = \left(\sum w_{i} M_{i}^{a}\right)^{1/a}, \quad 0.5 \le a \le 0.8
$$
\n
$$
[\eta] = \lim_{c \to 0} \left(\frac{\eta - \eta_{0}}{c \eta_{0}}\right)
$$
\n
$$
n_{0} \cdot n_{0} \text{ for the solvent}
$$

 η_0 : η of pure solvent $[\eta]$: intrinsic viscosity *c* : concentration of polymer in solution

 \cdot **Mark-Houwink rule** (relationship betw. $[\eta]$ and $\overline{M_{\nu}}$)

 $[\eta] = K \overline{M_{v}}^{a}$

K, a : Mark-Houwink parameters, Unique for the combination of polymer & solvent

$$
\cdot \quad M_n \le M_v \le M_w \le M_z
$$

∙ **Polydispersity index**, PI (or heterogeneity index) [≡] *n* $\frac{W}{M}$ _n *M*

 M_{n} ≤ M_{w} 의 증명 :

 $\sum N_i (M^{}_i - M^{}_n)^2 \geq 0$ 이 성립하므로 풀어 쓰면 $\sum {N_i M_i}^2 + \sum {N_i M_n}^2 - 2 \sum N_i M_i N_n \geq 0$ 이 된다. 이 식을 $\sum N_i$ 로 나누면 $\frac{2}{2}$ + $M_n^2 - \frac{2 \sum N_i M_i M_n}{\sum N_i}$ ≥ 0 이므로 $^{\text{2}}$ 이 된다. 이를 다음과 같이 처리하면 $\frac{m_i}{iM_i}$ ≥ M_n 이 되므로 $M_{w} \geq M_{n}$ 이 성립한다. $\frac{N_i M_i^2}{\sum N_i} + M_n^2 - \frac{2\Sigma}{\Sigma}$ ∑ *i* $\frac{I_i}{i} + M_n^2 - \frac{2\sum N_i M_i M_n}{\sum N_i}$ *i i N* $\frac{1}{N_i} M_i^2 + M_n^2 - \frac{2 \sum N_i M_i M_i}{\sum N_i}$ $N_i M$ 2 *n i* $\frac{i^{M}i^{M}}{N_{i}} \geq M$ *N M* $\frac{1}{\sum N_i} \ge$ ∑ *i ii i* \sum_{i}^{n} M_n \sum_{i}^{n} $\frac{i^{M}i}{N_{i}} \times \frac{1}{M_{n}} \geq M_{n}$ \Rightarrow $\frac{\angle N_{i}i^{M}i}{\sum N_{i}} \times \frac{\angle N_{i}}{\sum N_{i}M_{n}} \geq M_{n}$ *N NN M* $\frac{H}{N_i} \times \frac{1}{M_n} \geq M_n \Rightarrow \frac{H}{N_i}$ *N M* $\frac{1}{N_i} \times \frac{1}{M_n} \geq M_n$ \Rightarrow $\frac{2^{n} l}{\sum N_i} \times \frac{2^{n} l}{\sum N_i M_i} \geq$ $\frac{N_i M_i^2}{\sum N_i} \times \frac{\sum N_i}{\sum N_i}$ $\frac{N_i M_i^2}{\sum N_i} \times \frac{1}{M_n} \ge M_n \Rightarrow \frac{\sum n_i}{\sum n_i}$ $\sum N_i M_i^2$ 1, $\sum N_i M_i^2$

Experimental techniques for MW determination

Absolute methods (no calibration) Relative" (calibration)

Table 1.3 Experimental techniques for molar mass determination

- *End group analysis* (by IR, NMR, titration) \rightarrow low molar mass polymers
- *Colligative properties*

Boiling point elevation (ebulliometry) Freezing point depression (cryoscopy) Osmotic pressure

b. p. elevation & f. p. depression

$$
\rightarrow M_n \text{ for low molar mass } (\leq 10000 \text{ g/mol})
$$

$$
\left(\frac{\Delta T_x}{c}\right)_{c\to 0} = \left(\frac{V_1 R T_0^2}{\Delta H_x}\right) \frac{1}{M_n} \qquad \begin{array}{c} V_1: \\ T_0: \end{array}
$$

 : molar volume of solvent b. p. or f. p. temperature for pure solvent $\triangle T_x$: $\triangle T$ in f. p. or b. p. $\triangle H_{_X}$: transition enthalpy

 $Osmometry$ ($M_n \leq 100,000$ g/mol)

van't Hoff equation:

$$
\left(\frac{\pi}{c}\right)_{c\to 0} = \frac{RT}{M_n}
$$
\n
$$
\leftarrow \qquad \frac{\pi}{c} = RT \left(\frac{1}{M_n} + A_2 c + A_3 c^2 + \cdots\right)
$$

• Light scattering \rightarrow M_{w} cf. small-angle neutron scattering(SANS) X-ray scattering

• *Visometry*
$$
\rightarrow \overline{M_v}
$$
 (relative method)

• *Size exclusion chromatography* (SEC), or *gel permeation chromatography* (GPC) : relative method ([∴] Calibration is necessary) porous gel을 지나는 시간이 다름. 농도를 굴절률이나 IR light absorption을 측정.

• *Degree of polymerization* (*X*)

$$
X = \frac{M}{M_{rep}} \qquad M_{rep} \sim \text{Molar mass of CRU}
$$

For step-growth polymerization : Most probable distribution (Schultz-Flory distribution)

$$
n_i = \frac{1}{\overline{X_n}} \left(1 - \frac{1}{\overline{X_n}} \right)^{i-1}
$$

 n_i : the number fraction of molecules of $X = i$: the number average of the degree of polymerization *Mn*

For chain radical polymerization : Schultz distribution

$$
n_i = \frac{4i}{\left(\overline{X_n} - 1\right)^2} \left(\frac{1}{1 + \frac{2}{\overline{X_n} - 1}}\right)^i
$$

1.7 Polymerization

Flory scheme (based on polymerization mechanism)

• **Step growth** (ex: polyamide, polycarbonate, polyester, PPO, PPS, etc.)

All reactions are reversible \therefore requires the removal of water for high MW. Number average degree of polymerization

$$
\overline{X_n} = \frac{1}{1-p} \qquad p : \text{extend of } \text{rxn} \left(= \frac{N_0 - N}{N_0} \right)
$$

즉 conversion no. of groups present initially' no. of groups reacted =

• **Chain growth** (ex: PE, PP, PS, PMMA, PVC, PVA etc.)

Radical, anionic, cationic or coordination polymerizations

Initiation, propagation, termination

- \rightarrow Linear polymer
- \rightarrow Branched polymer (by chain-transfer)

HDPE (low-pressure PE) vs. LDPE (high-pressure PE)

- Anionic & cationic \rightarrow Living polymerization
	- \rightarrow Molecular design Possible to prepare exact block copolymer Impurity (ex, water) leads chain transfer & termination of growing chains (고순도 필요)

1.8 Thermal transitions and physical structures

Fully amorphous \sim irregular chain structure Semicrystalline \sim lamella-shaped crystals & amorphous components

Differences in crystallinity \rightarrow differences in physical properties

ex) relaxation modulus $\equiv \left(\frac{\text{stress}}{\text{strain}}\right)$

Polymer Physics Chapter 1

※ Schematic diagram of stress relaxation modulus for isotactic PS and fully amorphous (atatic) PS

I : glassy (below T_g) II : leather-like (at T_g) III : rubber-like (rubber plateau) IV, V : sliding motions of molecules

1.9 Polymer materials

Thermoplastics Thermosets (phenoxy, epoxy, melamines, etc.) *Rubbers* or *elastomers* (SBR, PBD, PI, etc.)

Properties of a polymer material

- by structure of polymers, additives, processing methods & conditions \rightarrow cf. PE fibers 100 GPa (fibrous PE, longitudinal modulus) 1 GPa (conventionally processed)

