1.6 Molar mass

- Low molar mass substances (oligomers) : m. p. \uparrow with MW \uparrow .
- High molar mass substances (polymers) : m. p. constant with MW↑ but, rheological properties : (ex.) melt viscosity ↑ with MW↑

Molar mass distribution (3~4 지수 정도의 범위로 분포)

• Number average molecular weight

$$\overline{M_n} = \frac{\sum N_i M_i}{\sum N_i} = \sum n_i M_i = \frac{\sum W_i}{\sum \frac{W_i}{M_i}} = \frac{1}{\sum \frac{W_i}{M_i}}$$

- $N_i = \#$ of molecules
- n_i = numerical fraction or number fraction (= mole fraction x_i)
- W_i = mass of M_i
- W_i = weight fraction or mass fraction

Chapter 1

• Weight average molecular weight

$$\overline{M_{w}} = \frac{\sum N_{i} M_{i}^{2}}{\sum N_{i} M_{i}} = \frac{\sum W_{i} M_{i}}{\sum W_{i}} = \sum W_{i} M_{i}$$

· Viscosity average molecular weight

$$\overline{M_{v}} = \left(\frac{\sum N_{i} M_{i}^{1+a}}{\sum N_{i} M_{i}}\right)^{1/a} = \left(\sum w_{i} M_{i}^{a}\right)^{1/a}, \quad 0.5 \le a \le 0.8$$
$$[\eta] = \lim_{c \to 0} \left(\frac{\eta - \eta_{0}}{c \eta_{0}}\right)$$

 $\eta_0: \eta$ of pure solvent $[\eta]$: intrinsic viscosity c: concentration of polymer in solution

• Mark-Houwink rule (relationship betw. $[\eta]$ and $\overline{M_v}$)

 $[\eta] = K \overline{M_v}^a$

K, *a* : Mark-Houwink parameters, Unique for the combination of polymer & solvent

$$\cdot M_n \le M_v \le M_w \le M_z$$

· **Polydispersity index**, PI (or heterogeneity index) $\equiv \frac{M_w}{M_n}$

 $M_n \leq M_w$ 의 증명 :

 $\sum N_i (M_i - M_n)^2 \ge 0$ 이 성립하므로 풀어 쓰면 $\sum N_i M_i^2 + \sum N_i M_n^2 - 2 \sum N_i M_i N_n \ge 0$ 이 된다. 이 식을 $\sum N_i$ 로 나누면 $\frac{\sum N_i M_i^2}{\sum N_i} + M_n^2 - \frac{2\sum N_i M_i M_n}{\sum N_i} \ge 0 \quad 0 | \Box \Xi$ $\frac{\sum N_i M_i^2}{\sum m_i^2} \ge M_n^2 \quad \text{OI 된다. OI를 다음과 같이 처리하면}$ $\Sigma N_{\rm c}$ $\frac{\sum N_i M_i^2}{\sum N_i} \times \frac{1}{M_n} \ge M_n \quad \Rightarrow \quad \frac{\sum N_i M_i^2}{\sum N_i} \times \frac{\sum N_i}{\sum N_i M_i} \ge M_n \quad \text{or } \text{for } \text{f$ $M_w \ge M_n$ 이 성립한다.

Experimental techniques for MW determination

Absolute methods (no calibration) Relative " (calibration)

Method	Result	Comments Absolute method, restricted to low molar mass	
End-group analysis	\bar{M}_n		
Colligative methods:	\bar{M}_n	Absolute methods,	
ebulliometry, cryoscopy	11	ebulliometry/cryoscopy,	
and osmometry		restricted to low molar mass	
Light scattering	\bar{M}_{w}	Absolute method	
Viscometry	\bar{M}_{v}	Relative method, easy to use	
Size exclusion	Molar mass distribution	Relative method,	
chromatography (SEC)		requires calibration	

Table 1.3 Experimental techniques for molar mass determination

- End group analysis (by IR, NMR, titration) \rightarrow low molar mass polymers
- Colligative properties

Boiling point elevation (ebulliometry) Freezing point depression (cryoscopy) Osmotic pressure

b. p. elevation & f. p. depression

$$\rightarrow \overline{M_n}$$
 for low molar mass ($\leq 10000 \text{ g/mol}$)

$$\left(\frac{\Delta T_x}{c}\right)_{c\to 0} = \left(\frac{V_1 R T_0^2}{\Delta H_x}\right) \frac{1}{\overline{M_n}} \qquad V_1 : \text{ molar volume of solvent} \\ T_0 : \text{ b. p. or f. p. temperature for pure solvent} \\ \triangle T_x : \triangle T \text{ in f. p. or b. p.}$$

 $\triangle H_x$: transition enthalpy

<u>Osmometry</u> ($\overline{M_n} \leq 100,000 \text{ g/mol}$)

van't Hoff equation:

$$\left(\frac{\pi}{c}\right)_{c \to 0} = \frac{RT}{M_n}$$

$$\leftarrow \qquad \frac{\pi}{c} = RT \left(\frac{1}{M_n} + A_2c + A_3c^2 + \cdots\right)$$

• Light scattering $\rightarrow \overline{M_w}$ cf. small-angle neutron scattering(SANS) X-ray scattering

• *Viscometry*
$$\rightarrow \overline{M_{\nu}}$$
 (relative method)

Size exclusion chromatography (SEC), or gel permeation chromatography (GPC)
: relative method (∴ Calibration is necessary)
porous gel을 지나는 시간이 다름. 농도를 굴절률이나 IR light absorption을 측정.

• Degree of polymerization (X)

$$X = \frac{M}{M_{rep}} \qquad M_{rep} \sim \text{Molar mass of CRU}$$

For step-growth polymerization : Most probable distribution (Schultz-Flory distribution)

$$n_i = \frac{1}{\overline{X_n}} \left(1 - \frac{1}{\overline{X_n}} \right)^{i-1}$$

 $\frac{n_i}{M_n}$: the number fraction of molecules of X = i $\overline{M_n}$: the number average of the degree of polymerization

For chain radical polymerization : Schultz distribution

$$n_i = \frac{4i}{\left(\overline{X_n} - 1\right)^2} \left(\frac{1}{1 + \frac{2}{\overline{X_n} - 1}}\right)^i$$

1.7 Polymerization

Flory scheme (based on polymerization mechanism)

Criterion	Step	Chain	
Growth reaction	Reaction proceeds by stepwise intermolecular condensation	Repeating units are added one at a time	
Monomer concentration	Almost completely disappears early in the reaction	Decreases steadily throughout the reaction	
MW of high polymer	Increases steadily	Is formed at once	
Reaction time	Long reaction time is essential to achieve high MW	Long reaction time will increase the yield (not MW)	
Reaction mixture All species are present		Mixture contains high polymer, monomer and small no. of growing chains	

• Step growth (ex: polyamide, polycarbonate, polyester, PPO, PPS, etc.)

All reactions are reversible \therefore requires the removal of water for high MW. Number average degree of polymerization

$$\overline{X_n} = \frac{1}{1-p}$$
 $p : \text{extent of rxn} \left(=\frac{N_0 - N}{N_0}\right)$

 $=\frac{\text{no. of groups reacted}}{\text{no. of groups present initially}}, \quad \stackrel{\text{reacted}}{=} \text{ conversion}$

р	0.1	0.9	• • •	0.9999	
$\overline{M_n}$	1.1	10	•••	10000	

• Chain growth (ex: PE, PP, PS, PMMA, PVC, PVA etc.)

Radical, anionic, cationic or coordination polymerizations

Initiation, propagation, termination

- \rightarrow Linear polymer
- \rightarrow Branched polymer (by chain-transfer)

HDPE (low-pressure PE) vs. LDPE (high-pressure PE)

- Anionic & cationic \rightarrow Living polymerization
 - → Molecular design
 Possible to prepare exact block copolymer
 Impurity (ex, water) leads chain transfer & termination of growing chains (고순도 필요)

1.8 Thermal transitions and physical structures

Fully amorphous ~ irregular chain structure Semicrystalline ~ lamella-shaped crystals & amorphous components

Differences in crystallinity → differences in physical properties

ex) relaxation modulus $\equiv \left(\frac{\text{stress}}{\text{strain}}\right)$

Polymer Physics

* Schematic diagram of stress relaxation modulus for isotactic PS and fully amorphous (atatic) PS

I : glassy (below T_g) II : leather-like (at T_g) III : rubber-like (rubber plateau) IV, V : sliding motions of molecules

1.9 Polymer materials

Thermoplastics Thermosets (phenoxy, epoxy, melamines, etc.) Rubbers or elastomers (SBR, PBD, PI, etc.)

Properties of a polymer material

- by structure of polymers, additives, processing methods & conditions
 → cf. PE fibers 100 GPa (fibrous PE, longitudinal modulus)
 1 GPa (conventionally processed)

