Photophysics Basic

홍익대학교 신동명

- Expressions of Intensity:
- Quantities based on radiometric system (not photometric
- system)
- Basic unit is joule and other SI units (sometimes non-Si units for convenience)
- Often definitions include area, volume or solid angle
- Spectral quantities B_{λ}
- Partial quantities $B_{\lambda_1 \lambda_2} = \int_{\lambda_1}^{\lambda_2} B_{\lambda} d\lambda$
- Total quantities -

$$B = \int_0^\infty B_\lambda d\lambda$$

TABLE 2-1

Radiometric system

Symbol(s)	Description	Defining equation*	Unit(s)
Q	Energy in the form of radiation		J (ergs)
Ũ	Radiant energy per unit volume	$U = \frac{\partial Q}{\partial V}$	J cm ⁻³
$\Phi(P)$	Rate of transfer of radiant energy	$\Phi = \frac{\partial Q}{\partial t}$	w
1	Radiant power per unit solid angle from a point source	$I = \frac{\partial \Phi}{\partial \Omega}$	W sr ⁻¹
М	Radiant power per unit area	$M = \frac{\partial \Phi}{\partial A}$	W cm ⁻²
J	Radiant power per unit solid angle per unit volume	$J = \frac{\partial^2 \Phi}{\partial \Omega \ \partial V}$	W sr ⁻¹ cm ⁻³
B(L)	Radiant power per unit solid angle per unit projected area	$B = \frac{\partial^2 \Phi}{\partial \Omega \ \partial A_p} = \frac{\partial^2 \Phi}{\partial \Omega \ \partial A \cos \theta}$	W sr ⁻¹ cm ⁻²
Ε	Radiant power per unit area	$E = \frac{\partial \Phi}{\partial A}$	W cm ⁻²
Н	Integrated irradiance	$H = \int_0^t E dt$	J cm ⁻²
	Symbol(s) Q U $\Phi(P)$ I M J B(L) E H	Symbol(s)DescriptionQEnergy in the form of radiation Radiant energy per unit volume $\Phi(P)$ Rate of transfer of radiant energyIRadiant power per unit solid angle from a point sourceMRadiant power per unit areaJRadiant power per unit solid angle per unit volumeB(L)Radiant power per unit solid angle per unit projected areaERadiant power per unit areaHIntegrated irradiance	Symbol(s)DescriptionDefining equation* Q U U V V $\Phi(P)$ $\Phi(P)$ Energy in the form of radiation Radiant energy per unit volume $U = \frac{\partial Q}{\partial V}$ $\Phi = \frac{\partial Q}{\partial t}$ I I $A adiant power per unit solidangle from a point sourceI = \frac{\partial \Phi}{\partial \Omega}\frac{\partial A}{\partial A}JB(L)Radiant power per unit solidangle per unit volumeI = \frac{\partial \Phi}{\partial \Omega}\frac{\partial A}{\partial A}EHRadiant power per unit areaA region = 0B = \frac{\partial^2 \Phi}{\partial \Omega \partial A_F} = \frac{\partial^2 \Phi}{\partial \Omega \partial A \cos \theta}EHRadiant power per unit areaA region = 0E = \frac{\partial \Phi}{\partial A}\frac{\partial A cos \theta}{\partial A A cos \theta}$

D.M. Shin : Functional Organic Thin Film

- Radiant flux (F) : rate of energy transfer : J-s⁻¹ = W
- Radiant intensity (I) : radiant flux from a point source per unit solid angle (Φ/4π) -applies to source J-s⁻¹-sr⁻¹
- Radiance (B) :radiant intensity (I) per projected area* (Φ/4πA) - applies to source
- *depends on angle between detector and radiation propagation direction ; J-s⁻¹ -sr⁻¹ -cm⁻²
- Irradiance (E) : radiant flux (F) onto/from a surface per unit area (Φ/A) - applies to source or detector : J-s ⁻¹ -cm ⁻²
- (radiant) Exposure (H)
- time-integrated irradiance (Φ(t)/A·dt) : J·cm⁻²

- Often, radiometric quantities include a solid angle or projected area
- Solid angle 1 steradian (sr) is the part of the surface area of a sphere of radius r, having an area of r²

A sphere = $4 \times \pi \times r^2$

• # steradians in sphere = ($4 \times \pi \times r^2$) / $r^2 = 4 \times \pi = 12.57$

For example, intensity is the radiant flux per unit solid angle $I = \Phi / 4\pi$

D.M. Shin : Functional Organic Thin Film

• Absorbance A given by Beers' Law; related to the measured quantities Φ_0 and Φ (radiant flux) by

• $A = -\log T = -\log(\Phi / \Phi_0) = \varepsilon \times b \times c$

- c: concentration (mol-L-1)
- b: cell pathlength (cm)
- ε:molar absorptivity (L-mol-1-cm-1)
- $\Box \Phi = \Phi_0 \times 10^{-\varepsilon \times b \times c}$

Many radiation sources are based on black body radiation:

 perfect absorber of radiation at all λ's if in thermal equilibrium, must also be perfect radiation emitter

- Two obvious points:
- total amount of energy radiated increases rapidly with T
- U = a×T⁴ <= Stefan's Law
- Radiant energy density (J-cm⁻³)
- position of the maximum spectral radiance (λmax) blue shifts with increasing T
- $\Box \quad \lambda_{max} = c_2 / 4.965 \times T$
- where c₂ = 1.438x107 nm-K

