Fuel Cells - 1 Jong Hak Kim **Chemical Engineering Yonsei University**

Fuel Cells

Electrochemical cell which can continuously convert the chemical energy of a fuel and an oxidant to electrical energy

PEMFC (Proton Exchange Membrane Fuel Cell)

Fuel Cell vs. Battery

Membrane Electrode Assembly (MEA)

Anode Electrode Platinum (3-5 nm) Pt supported on carbon with polymer matrix Proton exchange membrane membrane 150 µm Cathode Electrode Platinum (3-5 nm) Proton exchange membrane Carbon Black (0.72 µm)

Li_xC₆/Electrolyte/CoO₂

- Chemical E → Electrical E
- Continuous generation of electricity.
- No need for electrical charging.

- Chemical E
 Electrical E
- Discontinuous generation of electricity.
- Need for electrical charging.

Classifications of fuel cells

Direct Fuel Cell

- Operating T: Low(<100°C), intermediate(100-500), high(>500°C)
- Type of fuels: natural gas, hydrogen, organics (hydrocarbons, alcohols), nitrogen compounds (ammonia, hydrazine)
- Nature of electrolytes: aqueous, molten salts, solid electrolyte (ceramic), polymer electrolyte

Indirect Fuel Cell

- Organics to hydrogen (or other fuels) by reformer or catalyst
- Enzymatic decomposition of biomaterials to hydrogen

Long-term direction

- New fuels & new fuel cell systems
- New organics, Biochemicals, etc.

Characteristics of fuel cells

i) High efficiency and reliability

- convert up to 90% of the energy in fuel into electric power & heat (high electrical conversion efficiency: 46% for PAFC, 60% for MCFC)
- fewer moving parts → higher reliability

ii) Environmental performance

- improving air quality: lower pollutant emission (SO₂, NO_x, CO₂, ash etc)
- reduce water consumption & waste water discharge
- quiet, no noise
- no used battery problem

iii) Unique operating characteristics

- economic benefits & technologies → research
- potential markets of fuel cell systems
- power plant, electrical vehicle, portable electronics

Basic Principles

Thermodynamics

$$\triangle G = \triangle H - T \triangle S$$
, $\triangle G^0 = -RT InK$

K ; equilibrium constant, $\Delta G < 0 \rightarrow a$ reaction can occur

$$\Delta G = - nFE$$

- Kinetics
- Overvoltage or Polarization: ohmic, activation, concentration

< Polarization curves of H₂-O₂ cell >

- **▶** Activation
- slow electrode RXN
- **▶** Ohmic
- resistance of electrolyte
- **▶** Concentration
- difference btn. surface & bulk

Electrode Mechanism

• H₂-O₂ fuel cell

- In acid electrolyte

anode: $H_2 \rightarrow 2H^+ + 2e^ E_0 = 0.000 \text{ V}$ cathode: $1/2O_2 + 2H^+ + 2e^- \rightarrow H_2O$ $E_0 = 1.229 \text{ V}$

Total: $H_2 + 1/2O_2 \rightarrow H_2O$ $E_0 = 1.229 \text{ V}$

- In alkaline electrolyte

anode: $H_2 + 20H^- \rightarrow 2H_2O + 2e^ E_0 = -0.828 \text{ V}$

cathode: $1/2O_2 + H_2O + 2e^- \rightarrow 2OH^ E_0 = 0.401 \text{ V}$

Total: $H_2 + 1/2O_2 \rightarrow H_2O$ $E_0 = 1.229 \text{ V}$

- 1) Hydrogen enters the pores of anode and reaches the reaction zone, where gas, electrolyte and conducting material meet.
- 2) Hydrogen diffuses to the active site of catalyst and ionized.
- 3) H+ react with OH- of the electrolyte to form water.
- 4) <u>Two electrons</u> are available to the electrical circuit. Cathode provides OH⁻ by 1/2O₂ + H₂O + 2e⁻ → 2OH⁻

Anode Process

- Potential of hydrogen anode is constant: easier interpretation

in acid solution;
$$1/2H_{2,ads} + H_2O \rightarrow H_3O^+ + e^-$$
in alkaline electrolyte;
$$1/2H_2 + OH^- \rightarrow H_2O + e^-$$

- Mechanisms
- 1) Adsorption of H₂ on the electrode surface

$$\mathbf{H_2} \rightarrow \mathbf{H_{2,solv}} \rightarrow \mathbf{H_{2,ads}}$$

- 2) Hydration & Ionization of H_{2,ads}
 - a) Dissociation of H₂ with subsequent ionization/hydration

$$H_{2,ads} \rightarrow 2H_{ads}^{+}$$
 (Tafel reaction)
 $H_{ads}^{+} + OH_{-} \rightarrow H_{2}O_{-} + e_{-}$ (alkaline)
 $H_{ads}^{+} + H_{2}O_{-} \rightarrow H_{3}O_{-} + e_{-}$ (acid)

b) Hydration & Ionization in one step (Heyrovsky-Volmer mechanism)

$$\begin{aligned} & \textbf{H}_{2,ads} + \textbf{OH}^{.} \rightarrow \textbf{H}_{ads} \cdot \textbf{H}_{2}\textbf{O} + \textbf{e}^{.} \rightarrow \textbf{H}^{+}_{ads} + \textbf{H}_{2}\textbf{O} + \textbf{e}^{.} \quad \text{(alkaline)} \\ & \textbf{H}_{2,ads} + \textbf{H}_{2}\textbf{O} \rightarrow \textbf{H}_{ads} \cdot \textbf{H}_{3}\textbf{O}^{+} + \textbf{e}^{.} \rightarrow \textbf{H}^{+}_{ads} + \textbf{H}_{3}\textbf{O}^{+} + \textbf{e}^{.} \quad \text{(acid)} \end{aligned}$$

3) Description of products (H₃O⁺, H₂O) and transport into electrolyte

- -Hg, Ag: no H₂ chemisorption & no oxidation
- Pt, Ir, Rh, Pd, Au: chemisorption & oxidation

Reaction process on three phase border of H₂-electrode

Cathodic Process

- Number of possible mechanisms of cathodic reaction
 e.g., forming intermediate hydrogen peroxide
- Actual potential (1.05-1.15 V) < Theoretical (1.23 V)
 - → due to the formation of hydrogen peroxide

$$O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^ E_0 = -0.07 \text{ V}$$

 $2HO_2^- \rightarrow H_2O_2 + O_2$

Nernst equation: concentration dependence of O₂/H₂O₂

$$E = E_0 - RT/nF \log Q$$

 $E = E_0 - 0.029 \log [(a_{OH}a_{HO2})/(p_{O2}a_{H2O})]$

- $10^{-5} \sim 10^{-8}$ mol/l of $H_2O_2 \Rightarrow 150 \sim 240$ mV potential drop
- Active catalyst (Pt, Pd) reduces the concentration to 10-11 mol/l

Gas Diffusion Electrode

- Porous gas diffusion electrode
- provide a large reaction zone area with a minimum of mass transport hindrance for the access of reactants and removal of products

e.g., smooth Pt: µA, porous electrode: A

- Three phase zone: reactant, electrolyte and catalyst meet, large area can be achieved by metal powder (100 m²/g) or carbon (1000 m²/g)
- Hydrophobic gas diffusion electrodes: fine carbon powder bonded with polymer, e.g., polytetrafluoroethylene (PTFE)
- hydrophobic gas diffusion layer + electrolyte wettable thin layer
 - \rightarrow keeping the pores free and facilitating gas access to the reaction sites

Two basic cell construction

- Monopolar: edge collection of current, high conductivity, size up to 400 cm², no serious problem with one cell failure
- Bipolar: current collector, large size, low conductivity materials

Electrocatalysts

- Acceleration of electrode reaction by a substance which is not consumed in the overall reaction
- $H_2 \rightarrow 2H^+ + 2e^-$

The highest activity in Pt, Pd, Ni

- Requirements for high catalytic activity
 - large, accessible surface (porosity)
 - fine distribution
 - adsorbability on the surface
 - desorption property of product
 - weakened bond in the adsorbed partner

● Low T H₂-O₂ fuel cell

- hydrogen electrode (Pt, Pd)
- oxygen electrode (Pt, Pd, special carbons, porphyrines, Ni etc)

Nobel metal catalysts

- poisoned by impurities (CO, S, etc) → non-noble metal catalysts

Fuel Cell efficiency

Carnot efficiency: theoretical efficiency of heat engine

$$\Pi = (\mathbf{T}_1 - \mathbf{T}_2)/\mathbf{T}_1$$

the efficiency can be unity 1) if T_2 is at absolute zero or 2) if T_1 becomes a very high value

- maximum Carnot efficiency: 40 50 %
- actual efficiencies ~ 1/2 of maximum efficiency
- Thermodynamic efficiency

$$n_{th} = \Delta G/\Delta H = 1 - T\Delta S/\Delta H$$

- typically ~ 90% ($H_2 + 1/2O_2 \rightarrow H_2O$, 83%)
- over 100% if the entropy of products > reactants (C + $1/2O_2 \rightarrow CO$, 124%)
- Electrochemical efficiency: η_{el} = nFE_K / ΔG = E_K/E₀

Fuel cell systems

Classifications; T, P, fuels, electrolytes

Fuel Cell System	Temperature (C)	Efficiency (cell)	Electrolyte	Anode	Cathode	Charge carrier	Fuel
Alkaline Fuel Cell	60-90	50-60 %	35-50% KOH	Pt base	Pt base	\mathbf{H}^{\dagger}	수소
(AFC)							100000
Phosphoric Acid Fuel Cell	160-220	55 %	Phosphoric acid	Pt base	Pt base	\mathbf{H}^{+}	수소
(PAFC)							
Molten Carbonate Fuel Cell	620-660	60-65 %	Molten Salts	Ni	NiO	CO ₃ ²⁻	수소
MCFC)							
Solid Oxide Fuel Cell	700-1000	55-65 %	Ceramic	ZrO_2	Perovskite	O ²⁻	수소
(SOFC)							
Polymer Electrolyte Fuel Cell	50-80	50-60 %	Polymer	Pt base	Pt base	\mathbf{H}^{+}	수소
(PEMFC)			Membrane				
Direct Methanol Fuel Cell	2 -80	50-60 %	Ion Exchane	Pt base	Pt base	$\operatorname{H}^{^{+}}$	메탄올
(DMFC)			Membrane				

Typical Electrochemical Reactions in Fuel Cells

Fuel Cell	Anode Reaction	Cathode Reaction	
Alkaline Fuel Cells	H ₂ + 2(OH) ⁻ → 2H ₂ O + 2e ⁻	1/2O ₂ + H ₂ O + 2e ⁻ → 2(OH) ⁻	
Polymer Electrolyte Fuel Cells	H ₂ → 2H ⁺ + 2e ⁻	$\frac{1}{2}O_{2} + 2H^{+} + 2e^{-}$ $\rightarrow H_{2}O$	
Phosphoric Acid Fuel Cells	H ₂ → 2H ⁺ + 2e ⁻	1/20 ₂ + 2H ⁺ + 2e ⁻ → H ₂ O	
Molten Carbonate Fuel Cells	$H_2 + CO_3^{2-} \rightarrow H_2O + CO_2 + 2e^-$	$\frac{1}{2}O_{2} + CO_{2} + 2e^{-}$ $\rightarrow CO_{3}^{2-}$	
Solid Oxide Fuel Cells	H ₂ + O ²⁻ → H ₂ O + 2e ⁻	$\frac{1}{2}$ O ₂ + 2e ⁻ \rightarrow O ²⁻	

Polymer electrolyte membrane FC (PEMFC) Proton exchange membrane FC

Advantages

- no corrosive liquid in the cell
- simple to fabricate the cell
- low operating temperature
- able to withstand large pressure differences
- minimal material corrosion problems
- long lifetime

Disadvantages

- expensive fluorinated polymer electrolyte & high cell costs
- water-management in the membrane
- noble metal catalysts needed
- poor CO tolerance
- difficulty in thermally integrating with a reformer

Membranes

- the electrolyte to provide ionic communication btn. electrodes
- a separator for two reactant gases

Water management

- Dehydration of membrane reduces conductivity
- Excess of water can lead to flooding of the electrodes
 - → poor cell performance
 - → to drain or supply water by capillary action, humidifying the reactants, flow design, temperature rising (increase water vapor).

Electrodes: gas diffusion electrodes

- porous carbon cloth with catalyst (Pt or supported Pt)
- how to reduce Pt loading
 - : smaller nanoparticles, changes in electrode structure, Pt on surface only, supported Pt
- Cyclic voltammetry: 10-20% Pt was active for hydrogen/oxygen adsorption/desorption

Catalysts and Substrates

lonomer

ion containing polymer, polyelectrolyte copolymer – nonionic and ionic repeat unit

Gas diffusion layer: current collecting, water removing, physical support, fuel diffusion

Catalyst layer: electrode (anode, cathode)

Membrane: electrolyte

Polymer Membrane: NAFION

$$\frac{-\left(CF_{2}-CF_{2}\right)_{\chi}\left(CF_{2}-CF\right)_{y}}{\left(O-CF_{2}-CF\right)_{m}}O-\left(CF_{2}\right)_{n}SO_{3}H$$

Nafion®117 m≥1, n=2, x=5-13.5, y=1000

Flemion® m=0, 1; n=1-5

Aciplex® m=0, 3; n=2-5, x=1.5-14 Dow membrane m=0, n=2, x=3.6-10

- Thickness : 50~175µm, equivalent weight : 1,100 mEq/g
- High oxygen solubility, high proton conductivity, low density, high chemical and thermal stability, high water solubility
- H₂SO₄ solution as pretreatment

Problem

- Low water content => low proton conductivity
 High content => flooding in electrode => inefficient reaction
- Methanol crossover in DMFC
- High cost

Production Company for Membrane

US: Du Pont (Nafion), Dow Chemical (XUS),

W.L. Gore & Associate (Gore-Select)

Canada: Ballard Advanced Materials (BAM3G)

Japan : Asahi Chemical (Aciplex), Asahi Glass (Flemion),

Chlorine Engineer (Product 'c'),

German : Hoechst

Membranes	Equivalent weight (g/mol SO ₃ -)	Thickness, dry(µm)	Water content(%)	Conductivity (S/cm)
xus	800	125	54	0.114
Aciplex-S	1000	120	43	0.108
Nafion 115	1100	130	34	0.059
Gore- Select	1100	20	32	0.053
Flemion	900	50, 80		

Aciplex, Dow membrane

- Short side chain
- High ratio of SO3H/CF2
- High specific conductivity

Gore-Select

- Fine mesh PTFE support impregnated with Nafion
- high mechanical stability ~ 10µm

Conducting Mechanisms

(CF₂)_n (CF₂)_n (CF₂)_n (CF₂)_n (CF₂)_n (CF₂) (CF₂)

Grotthus mechanism vs vehicle mechanism

- Polar ionic groups
- tend to cluster together,
- away from nonpolar backbones
- Reversible crosslinker
- when heated, ionic groups loose their attraction
- chains move around freely

Sulfonated Aromatic Polymers

Poly(styrene) (PS)

Polysulfone (PSf)

$$+$$
 C_{H_3} C_{H_3} C_{H_3} C_{SO_3Na}

Poly(ether sulfone) (PES)

Poly(ether ether ketone) (PEEK)

Poly(benz imidazole) (PBI)

Poly(phenylene sulfide) (PPS)

Performance of PEMFC

- Effect of temperature
- **T**↑ → resistance of electrolyte↓
 - → cell performance ↑

 Effect of cathodic reactant composition & pressure

 $P \uparrow$, $O_2 \uparrow \rightarrow$ increase of MT \rightarrow cell performance \uparrow

Performance of PEMFC

- Effect of CO in the fuel gas
 - → reduce CO content (selective oxidation of CO to CO₂ by passing with small oxygen or air through a small reactor containing Pt)
 - \rightarrow CO-tolerant Pt catalysts