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(Partial Differential Equation, PDE)



Fourler Series

Now suppose that f(x) is a given function of period 27 and is such that it can be
represented by a series (4), that is, (4) converges and, moreover, has the sum f(x). Then,
using the equality sign, we write

oo
(3) f(x) = ag + 2 (a,, cos nx + b, sin nx)
n=1
| | | | | | | | |
0 T 27 0 T 27 0 T 2
Cos X Cos 2x cos 3x
0 T 27 0 T 27 0 T 27
| | | | | | | | |
Sin X sin 2x sin 3x

Cosine and sine functions having the period 27



and call (5) the Fourier series of f(x). We shall prove that in this case the coetficients
of (5) are the so-called Fourier coefficients of f(x), given by the Euler formulas

l r
(a) ap = - f f(x) dx
- | |
(6) (b) dy, = — f(x) cos nx dx n=12 -

1 r
(¢) by, = — f f(x) sin nx dx n=12---



we thus obtain from (1) the Fourier series of the function f(x) of period 2L

n ‘ - nar o on
(5) f(x) = ag + 2 (,, COS 3 x + b, sin 3 X
n=1
with the Fourier coefficients of f(x) given by the Euler formulas

l L
(a) g = EY3 f Lf(.x') dx

| L NTTX
6) ® 4= f_Lf(-r) cos 7= d
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Fourier Series Example
(Sawtooth wave)

Find the Fourier series of the function
f(X)=X+7mift —7T<X<7
and f(X+27)=1(x)



Solution of Fourier series

Euler formula

2 rL . hzaX
bn:f.[o f(x)sdex
2 o 2
b =—J' XSIn nxdx =——cosnsx
n g 90 1

f(x):ansinnTﬂx
n=1

f(0)=nx

f(X)=7m+2(sin x—%sin 2x+%sin 3X—+--)



Graph of Function f(x) by Matlab

iz ;(:5120112], B Fiaiieo | | aER
>> for(n=1:1000) S IBISERD LI
y=y+(-2/n)*cos(n*pi)*sin(n*x);
end 6f ]
>> plot(xy) of _
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plot(x,v)
clc
w[-12:0.1:12]:
clc
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plot(x,v)
= e 1

[@ st

R

.Figures_} Command Windowy | Edltor |

[+




Maftlab Program for Partial
sums S1,52,53,520

>> x=-pi.0.01.pi;

>> a=pi;

>> for n=1.1.1,
a=a+(-2/n)*cos(n*pi)*sin(n*x);
end

>> subplot(2,2,1);

>> plot(x,q)

>> b=pi,

>> for n=1.1.2,
b=b+(-2/n)*cos(n*pi)*sin(n*x);
end

>> subplot(2,2,2);

>> plot(x,b)

>> c=pi,

>> for n=1.1.3;
c=c+(-2/n)*cos(n*pi)*sin(n*x);
end

>> subplot(2,2,3);

>> plot(x,c)

>> d=pi;,

>> for n=1.1.20;
d=d+(-2/n)*cos(n*pi)*sin(n*x);
end

>> subplot(2,2,4),

>> plot(x,d)



Partial sums S1,52,5S3,520
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> w=—pi:0,001:pi:
= a=pi;

= for n=1:1:1;
a=a+(~2/n)+cos(nspil+sinnex);
end

=» subplot(2,2,1);

»> plot(x,a)

== b=pi;

== for n=1:1:2;
b=b+(-2/n)+cos(nspiJesin(nex);
end

»» subplot(2,2,2);

> plot(x,b)

> opis

== for n=1:1:3;

plotix. bl

C=pi;

for n=1:1:3;

oo+ (=2 nlrcos(nepi Jesininen)
end

subplot(2,2,3);

plotix,cl

for n=1:1:20:

end

d=pi;

for n=1:1:20;
d=d+(-2/nl+cosinepi Jesinines];
end

subplot(2,2,4);

plotix,d)

c=c+i=2/nl+cos(nepi Jesinlnes);
end

=> subplot(2,2,3);

x> plot{x,c)

== for n=1:1:20;
end

== d=pi;

== for n=1:1:20;

d=d+(-2/n)+cosinepi)+sininsn);
end

»» subplot(2,2,4);

== plot(x,d)
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Partial sums S1,52,53,520

>> x=-pi.0.01:pi;

>> a=pi;

>> for n=1.111;
a=a+(-2/n)*cos(n*pi)*sin(n*x);
end

>> b=pi;

>> for n=1.1.2;
b=b+(-2/n)*cos(n*pi)*sin(n*x);
end

>> c=pi;

>> for n=1.1:3;
c=c+(-2/n)*cos(n*pi)*sin(n*x);
end

>> d=pi;

>> for n=1.1.20;
d=d+(-2/n)*cos(n*pi)*sin(n*x);
end

>> plot(x,[a; b; c; d])
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A partial differential equation (PDE) is an equation involving one or more partial
derivatives of an (unknown) function, call it u, that depends on two or more variables,
often time 1 and one or several variables in space. The order of the highest derivative is
called the order of the PDE. As for ODEs, second-order PDES will be the most important
ones In applications.

Just as for ordinary differential equations (ODES) we say that a PDE is linear if it is
of the first degree in the unknown function i and its partial derivatives. Otherwise we call
il nonlinear, We call a linear
PDE homogeneous if cach of its terms contains either i or one of its partial derivatives.
Otherwise we call the equation nonhomogeneous.

#u 2 i )
(h . g ey One-dimensional wave equation
di i

o r
(2) — =¢* -3 One-dimensional heat equation
al A

r'lzn Fiili

(3) s +—3 =0 Two-dimensional Laplace equation
Ay (v




The model of a vibrating elastic string (a violin string. for instance) consists of the
one-dimensional wave equation

a2u X a2
=

ar? ax

B o

(1) - 2 -

4
p

for the unknown deflection u(x, 1) of the string. a PDE that we have just obtained, and
some additional conditions, which we shall now derive.

Since the string is fastened at the ends x = 0 and x = L . we have the
two boundary conditions

(2) (a) w(O, =0, (by w(l.n =10 for all 7.

Furthermore, the form of the motion of the string will depend on its initial deflection
(deflection at time t = 0), call it f(x), and on its initial velocity (velocity at f = 0), call
it g(x). We thus have the two initial conditions

(3) (a) wix, 0) = f(x), (b) ux, 0) = g(x) O=x=1L)

where i, = au/ar. We now have to [ind a solution of the PDE (1) satislying the conditions

(2) and (3). This will be the solution of our problem. We shall do this in three steps, as
follows.



Separation of Variables and
Fourier Series

Step 1. By (he “method of separating variables” or product method, selling
ulx, N = F) G, we obtain from (1) two ODEs. one for F(x) and the other one for G(1).

Step 2, We determine solutions of these ODEs that satisfy the boundary conditions (2).

Step 3. Finally, using Fourier series, we compose the solutions gained in Step 2 to obtain
a solution of (1) satisfying both (2) and (3), that is, the solution of our model of the
vibrating string.



PDE Wave Equation Analytical Solution

Wave Equa

tion with the following initial condition

for the string fixed at both ends at x = 0 and L

f(X)=H

— X (O<x<%)

— (L —X) (%<x< L)
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Matlab Program for Wave
Equation Solution

Command Window

¥ L=10:

*ow =0 1/1000 :L;

I

¥ t=;

¥ k=2;

»»oul=l;

¥» forn= 121 01000

g = B+k/{n=pi ) 2+sinin=pi 2);
h = sin(n+pi/L+{x-c+t));

ul = ul +1/2+g+h;

end

subplot(2,1,1), plot{x,ul, 'r'J;
*» hold on;

*ou2 = 0;

*= for o= 1:1:1000

g = 8k (nepi ) "2 +sininepi /2);
h = sin{n+pi /s {xeoet));

u2 = u2 + 1/2+g+h;

end

>> gubplot (2, 1,10, plot{x, 02, 0" );

»xoaxisf[0LO2]);
> set{gea, ‘wtick’, [0:L/2:L]);
w_label=strimat (0", L2, 'L');

»» gset(gea, ‘wticklabel ' ,x_label);

> getl{gea, ‘whick ,[0:1:2]);

> gtext(#leftarrawl /2f+0x)");

= arid on:

¥ setlgct, ‘color, "W );

¥ u=l;

U= ul+ud;

¥» subploti2,1,2),plotix,u, - k' );
*» atext(Wleftarrowa(s, 0] );

»» gtext( 't=0");

¥

1
u(x, t) = f *(x—¢
( )2 (

D :% f *(x—ct)

Ct) 4—; f*(x+ct)

&, =% f *(x+ct)




Graphs from the Matlab
0 ‘ I \
u T L u T L Program
l 1
] . I \
0 1)} L 0 1)} L
2 ‘ !
U>< File Edit Miew Inset Tools Desktop Window Help LY
: | : ‘ DeEdE k RAaAM® € 0B 5O
0 1z L 0 1z L .
. 1 !
u i
L T SNy 7
1 ‘ E
0 1)} L
w D ;
i L2 L
D\H"‘-\-\. .-"‘"..-a 2 1=ID PR T
2 : W ‘ 15} P L |
0 1z L 0 1z L ~ - =ul)
2 u i 7 . I
| osp o7 T T
: | ; | I I N A R ]
0 12 L 0 12 L
I I
1 1
] ‘ ]




Heat or Diffusion Equation

From the wave equation we now turn to the next “big” PDE, the heat equation

ou

. . K
= 2V2y, 2= —

ot ap

which gives the temperature u(x, y, z. f) in a body of homogeneous material. Here ¢? is
the thermal diffusivity, K the thermal conductivity, o the specific heat, and p the density
of the material of the body. VZu is the Laplacian of u, and with respect to Cartesian
coordinates x, v, Z,
a°u J°u 92u
00X 972
The heat equation was derived in Sec. 10.8. It is also called the diffusion equation.

As an important application, let us first consider the temperature in a long thin metal
bar or wire of constant cross section and homogeneous material, which is oriented along
the x-axis (Fig. 291) and is perfectly insulated laterally, so that heat flows in the x-direction



Furthermore, the initial temperature in the bar at time 1 = (0 is given, say, f(x), so that we
have the initial condition

(3) ulx, 0) = fx) [ f(x) given].

Here we must have fi0) = 0 and fiL) = 0 because of (2).

We shall determine a solution u(x, 1) of (1) satisfying (2) and (3)—one initial condition
will be enough, as opposed to two initial conditions for the wave equation. Technically,
our method will parallel that for the wave equation, a separation of variables,
followed by the use of Fourier series. You may find a siep-by-step comparison worthwhile.
Step 1. Two ODEs from the heat uation (1). Substitwtion of a product

wix, 1) = F)G(H into (1) gives FG = ¢?F"G with G = dGldt and F" = d?Fldx? To
separale the variables, we divide by ¢*FG, oblaining

-+ G F_
; 3G~ F
The lelt side depends only on f and the right side only on x, so that both sides must equal
a conslant K, You may show that for & = 0 or £k = 0 the only solution
w = FG satisfying (2) is w = 0. For negative k = —p? we have from (4)
G F
—_—= —— = —p2
2 F P

Multiplication by the denominators gives immediately the two ODEs

(5 F'+ p?F =0



and
(6) G + ¢2p?G = 0,
Step 2. Satisfving the boundary conditions (2). We first solve (5). A general solution is
(7) Fix) = A cos px + B sin pux.
From the boundary conditions (2) it follows that
u(, Hn = FIGH) = 0 and L. = FILYG(H = 0.

Since G = 0 would give # = 0, we require F(0) = 0. F(L) = O and get F(0) = A =0
by (7) and then F(L) = B sin pL = 0, with B # 0 (to avoid F = 0): thus,

I
-2

sin pL. = 0, hence p=—. "

Setting B = 1, we thus obtain the following solutions of (5) satisfying (2):

g  nTX
A) = 81N ——, i
" B 7

|
o



. 8 cnm
O+ A G =0 where Ay, =
L
It has the general solution
Gl = B,.r""‘". n=12

where B, is a constant. Hence the functions

AR |
(8) itylx. 1) = F,(x)G,(1) = B, sin g e m=1,2, ~)

are solutions of the heat equation (1), satisfying (2). These are the eigenfunctions of the
problem, corresponding to the eigenvalues A, = cna/L.

Step 3. Solution of the entire problem. Fourier series. So far we have solutions (8)
satisfying the boundary conditions (2). To obtain a solution that also satisfies the initial
condition (3), we consider a series of these eigenfunctions,

- = 177X cn
(9) ux, 1) = 2, u,(x, 1) = >, B, sin ,: oMt (An = i) .

=] n=1



From this and (3) we have

u(x, 0) = Z B,, sin
~1

T

naTX

= J(X).

Hence for (9) to satisty (3), the B,,’s must be the coefficients of the Fourier sine series,
as given by (4) in Sec. 11.3; thus

nmwx

7 L
(10) B, = — f f(x) sin dx (n=1,2,+-").
L /g



Bar with Insulated Ends. Eigenvalue O
Find a solution formula of (1), (3) with (2) replaced by the condition that both ends of the bar are insulated.

Solution. Physical experiments show that the rate of heat flow is proportional to the gradient of the
temperature. Hence if the ends x = 0 and x = L of the bar are insulated, so that no heat can flow through the
ends. we have grad « = u,, = du/dx and the boundary conditions

(2%) (0, 1) = 0, AL, 1) =0 for all 7.

Since u(x, 1) = F(x)G(1), this gives (0, 1) = F'(0)G(1) = 0 and u (L, t) = F'(L)G(1) = 0. Differentiating (7).
we have F'(x) = —Ap sin px + Bp cos px. so that

F'(0)=Bp =0 and then F'(L) = —Ap sin pL = 0.
The second of these conditions gives p = p,, = nw/L, (n = 0,1, 2, -+ +). From this and (7) with A = 1
and B = 0 we get F,(x) = cos (nwx/L), (n = 0, 1,2, - - ). With G,, as before, this yields the eigenfunctions
. nTx o2,
(11) (X, 1) = F(x)G,(1) = A, cos e " (n=20,1,--)



corresponding to the eigenvalues A,, = cna/L. The latter are as before, but we now have the additional eigenvalue
Ao = 0 and eigenfunction ugy = const, which is the solution of the problem if the initial temperature f(x) is
constant. This shows the remarkable fact that @ separafion constant can very well be zero, and zero can be an
eigenvalue.

Furthermore, whereas (8) gave a Fourier sine series, we now get from (11) a Fourier cosine series

co

o0 .
nTx 2 CHIT
(12) uix, 1) = 2 Up(X, 1) = E A,, cos ;¢ An”t Ay = 3
=0 n=>0
[ts coefficients result from the initial condition (3).
oo
17T X

u(x, 0y = E A, COs = f(x).

n=0

in the form (2), Sec. 11.3, that is,

L
nx
f(x) cos dx. n
0 L

—_—
’

-3
’

t-~|u

| L
(13) Ao= T f F(x) dx, A, =
0
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